Lecture 1 - Programing Basics
Lecture 2 - Introduction to Pointers
Lecture 3 - Pointers And Arrays
Lecture 4 - External Functions and Argument Passing
Lecture 5 - Representation of Numbers
Lecture 6 - Numerical Error
Lecture 7 - Error Propagation and Stability
Lecture 8 - Polynomial Interpolation-1
Lecture 9 - Polynomial Interpolation-2
Lecture 10 - Error In Interpolation Polynomial
Lecture 11 - Polynomial Interpolation
Lecture 12 - Cubic Spline Interpolation
Lecture 13 - Data Fitting : Linear Fit
Lecture 14 - Data Fitting : Linear Fit
Lecture 15 - Data Fitting : Non Linear Fit
Lecture 16 - Matrix Elimination and Solution
Lecture 17 - Solution To Linear Equations
Lecture 18 - Matrix Elimination
Lecture 19 - Eigen Values of A Matrix
Lecture 20 - Eigen Values And Eigen Vectors
Lecture 21 - Solving NonLinear Equations
Lecture 22 - Solving NonLinear Equations Newton Raphson Method
Lecture 23 - Methods For Solving NonLinear Equations
Lecture 24 - System of NonLinear Equations
Lecture 25 - Numerical Derivations
Lecture 26 - High order Derivatives From Difference Formula
Lecture 27 - Numerical Integration - Basic Rules
Lecture 28 - Comparison of Different Basic Rules
Lecture 29 - Gaussian Rules
Lecture 30 - Comparison of Gaussian Rules
Lecture 31 - Solving Ordinary Differential Equations
Lecture 32 - Solving ordinary differential equations
Lecture 33 - Adaptive step size Runge Kutta scheme
Lecture 34 - Partial Differential Equations
Lecture 35 - Explicit and Implicit Methods
Lecture 36 - The Crank - Nicholson Scheme For Two Spatial
Lecture 37 - Fourier Transforms
Lecture 38 - Fast Fourier Transforms