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Lecture – 13 

Bending Stress in Beam - III 

 

Welcome to the NPTEL online certification course on Structural Systems in Architecture. We 

are going through the module number 3, the structural mechanics; and today is the last part of 

the bending stress on beam. Today we are going to have the lecture number 13. 

So, in this lecture we will go through the following concepts: 

➢ Advantages of Flanged Beam  

➢ Built-up Beams  

➢ Section Modulus of Asymmetric  

➢ Beam Section with Composite Materials 

 

The learning objectives of this particular the lecture will be: 

➢ Application of Bending equation in various beam sections. 

➢ Justification of advantages of flange sections over others.  

➢ Outline the theory of bending conceptually in beams with composite material. 

 

We should know what composite material in case of a beam? How this theory of bending is 

applicable? It is important to know because we sometimes use some of the composite material 

in our structural members like the concrete, RCC is one of example of composite materials. 

 

Now, let us first discuss about the advantage of the flanged sections. But, before we go to the 

flanged section, let us very curiously see the stress diagram given in Figure 1. The figure shows 

the stress distribution diagram over the section of a beam, because of bending. 

 

Figure 1: stress distribution diagram of a beam section due to bending 



 

So, in the figure you can see that on top on bottom of the beam section the bending stress is 

more; that means, you require more material over those areas to resist the bending stress or to 

pull down the stress to the permissible limit. Whereas in the central portion, near to the neutral 

axis or near to the CG axis of the beam, the bending stress is less or minimal. Therefore, it 

requires less amount of material. So, the material distribution also should follow the stress 

distribution from top to bottom. It should be in such a way that, we can do effective use of 

materials to result very economic beam sections.  

So, here if we consider a rectangular kind of a beam, as shown in Figure 2 (a). Here the two 

portions which are near to the neutral axis or the near the centre, we do not require them 

anymore, because we know that the central portion of the beam experiences less amount of 

stress. 

 

Figure 2: beam section and material used 

So, why should I give same material throughout the rectangular beam section when I can 

economize it? Yes, in some of the cases we cannot help. Practically we cannot cast this kind of 

sections, for example in concrete we can’t.  But, in some other materials we can think of this 

it, we can reduce the amount of material to economize the total cost of the structure. For 

example, steel gives us some solutions to create such kind of beam sections. 

 

Now, steel we can have some beam sections as shown in Figure 2 (b). This is an I beam. It is 

called as joist, rolled beam, or I section. Very popularly it is known as I section, because it 

looks like the English letter ‘I’. In this section we have two flanges; top and bottom, and the 

central portion connecting the two flanges is called the web. As we have discussed in the earlier 

cases, that is stress distribution, let us see this from stress distribution and material 



concentration point of view. Here in case of an I section, both the flanges are thin but wide. So, 

this section is having more material concentration on top and in bottom, which is required in 

high stress zone. On the other hand, the web is deep, long and thin. In web the concentration 

of material is not much, here it is less. Here, the thin but deep web will increase the values of 

IXX and ZXX. 

We can have series of I sections with different dimensions. In some cases, the depth remains 

same but the flange increases, as shown in Figure 3.  

 

Figure 3: wide flange sections 

For example, in Figure 3, the dimension of the web is 150, and flange changes as 100, 125, and 

150. So, the depth remains same, but the width of the flange is increased. This is called the 

wide flange sections. So, I can have a series of I sections which does not change its depth; 

depth remain same but it is the flanges increases. Sometimes we require this kind of sections 

to take care of the heavy amount of bending moments. 

On the contrary, we can also have some other types of sections where the flange will not be 

changed, width of the flange will remain same but the depth of the section, that is the web will 

be changed. For example, dimensions of the web are 100, 125, and may be 150; which is shown 

in Figure 4. 

 

Figure 4: deep I-section 



So, this is also good and this kind of the sections are also sometimes required to take care of 

the bending moments in beams, because with increment of the depth of the sections, you can 

increase the IXX value and eventually, you can increase the ZXX value. 

So, I have calculated some of the wide flange section as shown in Table 1. 

Table 1: the wide flange sections 

Section Width Area MI MR MR/Area 

50x100x50 50 2000 3866667 16.1 8.06 

75x100x75 75 2500 5383333 22.4 8.97 

100x100x100 100 3000 6900000 28.8 9.58 

125x100x125 125 3500 8416667 35.1 10.02 

 

Here, in all the cases, the dimension of the web is constant; but the dimensions of the top and 

bottom flange changes. The thickness of each members of the section is kept as 10. So, in the 

1st case, the 50x100x50, that means the width of the flange is 50 (for both top and bottom), and 

the web is 100. Similarly, for the other cases too. Using the formulas discussed earlier in the 

lecture, the area, MI, MR, and ratio of MR/Area is calculated, and here the σpermissible is kept as 

250. From here we note that, as we increase the width of the flange, the area increase, the 

moment of inertia increases, the moment of resistance increases and MR/Area also increases. 

The MR is important in resistance point of view and Area is important in cost point of view. 

The higher is the value of MR/Area better is the section and more beneficial. The graph of this 

is plotted in Figure 5, shown in blue line. 

Similarly, now if we increase the depth then, let us see what happens.  

Table 2: the deep I sections 

Section  Depth Area MI MR MR/Area 

100x50x100 70 2500 1920833 13.7 5.49 

100x75x100 95 2750 3980729 21.0 7.62 

100x100x100 120 3000 6900000 28.8 9.58 

100x125x100 145 3250 10756771 37.1 11.41 

 

So, here the flange remains same as 100, with thickness 10. I have increased the depth from 

50. Therefore, it goes like 70 and then to 95, 120, 145 like that. The area I have calculated 

which is increasing, MI, the moment of inertia increasing, MR is also increasing, MR by area 

is also increasing like that but considerably high amount over here, the jump is very, very high 



as shown in Figure 5. This jump is very high with compared to wide flange sections. So, 

because of the height increasing this jump is much more and at some point it is overshoot the 

wide flange sections. 

 

Figure 5: comparison of wide flange sections and deep I sections 

So, these calculations can also be done easily in excel sheet, where you can put your values 

and you can find out lot of things. By putting the formulas, the moment of inertia, the Y top, Y 

bottom, the Z bottom, Z top, the MR, the moment of resistance of the sections, stress in the top 

and bottom most sections etc. By changing the values, for example the bending moment, you 

can also check whether the section will be stable or will it fail. If we put higher values, which 

is more than permissible, than it will reflect as fail. If the stress at top and bottom are higher 

than permissible, the top and bottom conditions will be reflected as fail.  So, in this way you 

can actually see that all the things can calculate by virtue of excel sheet. 

So, let us next go to built-up beams. Sometimes you may need more amount of moment to be 

controlled or moment to be actually support. So, with I sections we can do that as we can go 

with lot of variety. We can go with plate, introducing some plates on top and bottom of the I 

section, we can use some kind of a channel section, we can also go with some kind of an angle 

sections and the plate, or some 2 channels can be put together and make a box sections; as 

shown in Figure 6. So, like that there are ample of ways to go for a geometrical construction 

of those different types of sections and different kind of built-up beams. These kinds of heavy 

sections are used in industrial structures, railway stations and maybe stadiums as well as for 

high-rise buildings. 

 



 

Figure 6: built-up beams 

Now, let us go to another criteria that is section modulus of asymmetric sections. In previous 

lectures we have discussed about the sectional modulus for the symmetrical sections where the 

Z top and the Z bottom we calculated based on the ‘y’ top and the ‘y’ bottom; ‘y’ is the distance 

from the neutral axis in the top and bottom respectively; and for the symmetrical section it is 

equal both the way, the top to bottom. But in some cases, it is not so, we may have some 

asymmetrical sections too. Hence, we will have the different values of the y top and the y 

bottom. However, the pivoting case will be there the neutral axis. 

So, at the neutral axis the value of sigma will be equal to 0. So as the y top is higher than the y 

bottom, then this σ top will be higher than that of σ bottom, refer Figure 7. The asymmetrical 

beam sections will have two section modulus. 

 

Figure 7: section modulus of an asymmetrical section 



 

So, each will have as a Z top and the Z bottom, because as you know the Z is nothing but – 

𝑍𝑥𝑥 =
𝐼𝑥𝑥

𝑦max
 

In asymmetrical sections, I cannot have a single ymax, I have a bottom ymax from the neutral 

axis; which will give me the tensile stress and I have a top ymax which will give me the 

compressive stress. Therefore, I have to calculate two such Z bottom and the Z top, refer Figure 

7. 

Now, we will see examples of some asymmetrical sections, where it would not give you the 

CG exactly at the central depth, as shown in Figure 8. So, the y top and the y bottom will be of 

different values.  

 

Figure 8: examples of some asymmetrical sections 

So, now let us try to solve a small problem. We will consider a T section and we will try to find 

out the stresses in top and bottom layers of the T- beam Section. The Bending Moment on the 

section is 20KN-m  

So, at first, I have calculated the position of the CG, and it will be at 107 from the bottom. So, 

as it is 107 from the bottom, the top fibre is 53 from the neutral axis. So, these two are not equal 

and it won’t be.  When we see the stress distribution diagram, then it will be like as shown in 

Figure 9. The σc will be smaller here and the σt will be higher; because the neutral axis is above, 

or closer to the top.  



 

Figure 9: stresses in a T beam section 

So, the stress will be smaller and the top and due to the funnel effect, it will be higher in the 

bottom. 

𝑦̅ =
{(150 × 10 × 75) + (100 × 10 × 155)}

{(150 × 10) + (100 × 10)}
  

𝑦̅ =
267500

2500
= 107 

Now 

𝜎𝑐 =
𝑀

𝐼
× 𝑦𝑡𝑜𝑝 =

𝑀

𝑍𝑡𝑜𝑝
 

𝜎𝑡 =
𝑀

𝐼
× 𝑦𝑏𝑜𝑡𝑡𝑜𝑚 =

𝑀

𝑍𝑏𝑜𝑡𝑡𝑜𝑚
 

 

Now, 

𝑍𝑏𝑜𝑡𝑡𝑜𝑚 =
𝐼𝑋𝑋

𝑦𝑏𝑜𝑡𝑡𝑜𝑚
 

𝑍𝑡𝑜𝑝 =
𝐼𝑋𝑋

𝑦𝑡𝑜𝑝
 

Then, 

𝐼𝑋𝑋 =
1

12
× 10 × 1503 + 1500 × (107 − 75)2 +

1

12
× 100 × 103 + 1000 × (155 − 107)2 

𝐼𝑋𝑋 = 6.66 × 106 

Assuming M=20 KNm 

𝑍𝑡𝑜𝑝 =
𝐼𝑋𝑋

𝑦𝑡𝑜𝑝
=

6.66 × 106

53
= 125.15𝑁/𝑚𝑚2  

𝑍𝑏𝑜𝑡𝑡𝑜𝑚 =
𝐼𝑋𝑋

𝑦𝑏𝑜𝑡𝑡𝑜𝑚
=

6.66 × 106

107
= 62.24 × 103𝑚𝑚3 

 



Then 𝜎𝑐 and 𝜎𝑡 will be 

𝜎𝑐 =
𝑀

𝐼
× 𝑦𝑡𝑜𝑝 =

𝑀

𝑍𝑡𝑜𝑝
=

20 × 106

125.66 × 103
= 159.15 𝑁/𝑚𝑚2  

𝜎𝑡 =
𝑀

𝐼
× 𝑦𝑏𝑜𝑡𝑡𝑜𝑚 =

𝑀

𝑍𝑏𝑜𝑡𝑡𝑜𝑚
=

20 × 106

62.24 × 103
= 321.33 𝑁/𝑚𝑚2 

 

 

Figure 10: computation of stresses in a T beam section 

So, next we will see another problem with an asymmetrical I section. This is to find the Moment 

of Resistance of the I- section. Given: Permissible Bending Stress in Compression and Tension 

is 250 N/mm2 and 150 N/mm2 respectively.  

This is asymmetrical because, bottom flange is 120 by 20 and the top one is 60 by 10, as shown 

in Figure 11; also, the permissible bending stress in the compression and tension is not equal, 

compression it is 250 N/mm2 and the tension it is 150 N/mm2, where the tension is little less. 

Now, calculating the CG of the section, we found that to be at 42.25 above bottom. 

Moment of Inertia 𝐼𝑋𝑋 = 8.29 × 106𝑚𝑚4 

 

 

Figure 11: stresses in an asymmetrical I section 



So, it will be pivoted at red dot point shown in Figure 11, and the neutral axis will lie towards 

the bottom or near to bottom. Therefore, the 𝜎𝑐 that is the stress in the compression zone will 

be higher with compared to the stress in the tensile zone. If remember in the last example we 

have seen that the neutral axis was towards the top that is why the top fiber stresses are less 

compared to the bottom. However, in this example the scenario is reversed.  

Here it is given that the Permissible Bending Stress in Compression and Tension is 250 

N/mm2 and 150 N/mm2 respectively. 

Now, there is a relation between  𝜎𝑐 and 𝜎𝑡 which is governed by the two triangles above and 

below the pivoting points; and we can find the relation with respect to 𝑦𝑡𝑜𝑝 and 𝑦𝑏𝑜𝑡𝑡𝑜𝑚. We 

can compute the relation as follows: 

 𝜎𝑐

𝜎𝑡
=

𝑦𝑡𝑜𝑝

𝑦𝑏𝑜𝑡𝑡𝑜𝑚
=

87.75

42.25
= 2.08  

 𝜎𝑐 = 2.08 𝜎𝑡  

So, from here we can see that  𝜎𝑐 is almost 2 times of  𝜎𝑡; that means whatever may be the 

value of 𝜎𝑐, it will be almost twice of that  𝜎𝑡  . It is higher because the neutral axis is towards 

the end or the bottom. 

Now, assuming 𝜎𝑡 = 150 𝑁/𝑚𝑚2 because this is the maximum permissible limit, I cannot put 

it this value as 151, because I know that beyond maximum permissible limit, it will fail. So, 

computing this, we can find 

𝜎𝑡 = 150𝑁/𝑚𝑚2 

𝜎𝑐 = 2.08 × 150 = 312 𝑁/𝑚𝑚2 

So, if we take the bottom tension limiting case as 150, then the top compression goes much 

higher than its limiting case of 250. Therefore, we cannot go with this, because with 𝜎𝑡 =

150𝑁/𝑚𝑚2 the beam section will fail. 

 

Figure 12: with limiting case of σt finding σc in an asymmetrical I section 



As shown in the red highlighted circle in Figure 12, the permissible compression in the material 

is only 250, so if I put 150 as  𝜎𝑡, then  𝜎𝑐 becomes 312, which is beyond the permissible limit 

of the compression; and the beam will fail. 

So, let us go to the other case around. What is the other case? That is checking with the limiting 

case of compression. We know the relation that  𝜎𝑐 = 2.08 𝜎𝑡   ; then computing this: 

If  

𝜎𝑐 = 250𝑁/𝑚𝑚2 

𝜎𝑡 = 250/2.08 = 120 𝑁/𝑚𝑚2 

𝜎𝑡 < 150 

As 150 is a limiting permissible case for the tensile stress, and it is 120, then this is okay. 

Therefore, it is mark it in green colour in Figure 13; and it is safe.  

In the earlier case it was not safe. So, in the safe case the topmost portion should catch the 

compression which is highest compression or the permissible compression that is 250 N/mm2 

and corresponding to that the bottom most portion will have 120 and that is safe. Based on that 

MR will be: 

𝑀𝑅 = 𝑍 × 𝜎 = 94.5 × 103 × 2550 = 23.625 × 106 𝑁𝑚𝑚 

𝑀𝑅 = 23.625  𝐾𝑁𝑚 

 

 

Figure 13: with limiting case of σc finding σt in an asymmetrical I section 

 

So, now going to another problem. Here I have kept a particular channel sections as beam and 

the I have to find out the values of thickness ‘t’ such a way that these both compression and 

the tension achieve simultaneously. So, for that I have to achieve σc permissible as 200 and 

achieved σt permissible as 100, so what should be the value of x such a way that I can achieve, 

refer Figure 14. 



 

Figure 14: stresses in case of a channel section 

So, for that I know the total depth of the section is 120, so if the depth below pivoting point is 

x, then above pivoting point will be 120 minus x; and computing this, we can find the value of 

x as: 

120 − 𝑥

𝑥
=

200

100
 

120 − 𝑥 = 2𝑥 

𝑥 = 40𝑚𝑚 

So, x has to be 40 and this the upper portion has to be 80. The hinge or pivoting point should 

be such a way that the sigma compression at the top will be 200; and at the same time, the 

sigma tension will be 100 in the bottom. After that I have then found out the CG of the section 

and the value of t. 

𝐶𝐺 =
{(160 × 20 × 10) + (2 × 100 × 𝑡 × 70)}

{(160 × 20) + (2 × 100 × 𝑡)}
= 40 

32000 + 14000𝑡

3200 + 200𝑡
= 40 

32000 + 14000𝑡 = 12800 + 8000𝑡 

6000𝑡 = 96000 

𝑡 = 16𝑚𝑚 

 

Figure 15: stresses in case of a channel section and its thickness 



So, to achieve achieve σc permissible as 200 and achieved σt permissible as 100, the thickness ‘t’ should 

be equal to 16mm 

Now, let us see the last example with composite material. Let us suppose a wooden timber 

beam, and the timber beam of cross section 100 X 200 mm is subjected to a bending moment 

of 75 KN-m. 

Then 

𝐼 =
1

12
× 100 × 3003 = 225 × 106 

The stress can be given by: 

𝜎 =
𝑀

𝐼
× 𝑦𝑚𝑎𝑥 =

75 × 106

225 × 106
× 150 = 50𝑁/𝑚𝑚2 

Then the stress distribution diagram can be given as: 

 

Figure 16: stress distribution diagram in a composite material beam section 

On the other hand, if I put two steel reinforced plates with thickness 10mm each, on the top 

and bottom of this section, then, assuming Es = 2X105 N/mm2   and Et = 0.1X105 N/mm2
,
 we 

will have two compatibility conditions. First is strain compatibility equation and second is 

radius of curvature compatibility equation, refer Figure 17. 

 

Figure 17: composite material beam section and compatibility equations 



And from this strain compatibility, you may say that the stress in steel, σs must be equal to 

product of m and σt . What is m? If you remember m is 𝐸𝑠/𝐸𝑡 that is the modular ratio. If you 

go for the radius of curvature compatibility, because radius of curvature also has to be equal 

and these two interfaces of the timber and steel; otherwise one will slip with other. So, in that 

case also we can say that σs, the stress in steel is equal to modular ratio into the stress in timber. 

So, in that case what I have done is, our original section has to be enlarged to equivalent to 

timber sections where I increased the sections of the steel by multiplying the dimension of 100 

by 20; and 20 is nothing but the modular ratio. So, now the equivalent timber section looks like 

as shown in Figure 18. The dimension 300 by 100 remains same, but at top and bottom there 

are two such enlarged portion of 20×100=2000. 

 

 

Figure 18: original and equivalent timber beam section 

From that you can find out the moment of inertia, stress in steel at top, stress in timber at 

junction, and stress in steel at junction. 

Moment of inertia of equivalent section: 

𝐼 =
1

12
× 100 × 3003 +

1

12
2000 × 103 + (2 × 2000 × 10) × 1552 

𝐼 = 231.53 × 106𝑚𝑚4 

 

Stress in timber junction 

𝜎𝑡 =
𝑀

𝐼
× 𝑦 =

75 × 106

231.53 × 106
× 150 = 48.6𝑁/𝑚𝑚2 

 

Stress in steel junction: 

𝜎𝑠 = 𝑚 × 𝜎𝑡 = 20 × 48.6 = 972𝑁/𝑚𝑚2 

 



Stress in steel top: 

𝜎𝑠 = 𝑚 × 𝜎𝑡 = 𝑚 ×
𝑀

𝐼
× 𝑦 = 20 ×

75 × 106

231.53 × 106
× 160 = 1036.6𝑁/𝑚𝑚2  

 

These will be important for your RCC design of course, but RCC design is not included in this 

course. 

 

The references taken for this lecture is: 

➢ Structure as Architecture by Andrew W. Charleson, Elsevier Publication 

➢ Basic Structures for Engineers and Architects by Philip Garrison, Blackwell 

Publisher 

➢ Structure and Architecture by Meta Angus J. Macdonald, Elsevier 

Publication 

➢ Examples of Structural Analysis by William M.C. McKenzie 

➢ Engineering Mechanics by Timishenko and Young McGraw-Hill Publication 

➢ Strength of Materials By B.C. Punmia, Ashok K.Jain & Arun K.Jain Laxmi 

Publication 

➢ Understanding Structures: An Introduction to Structural Analysis By Meta 

A. Sozen & T. Ichinose, CRC Press 

 

So, in conclusion we can say that the flange beam is effectively used as a main section which 

is very much important and very much effective; and the composite beam can be used to 

improve the moment of resistance or the capacity of the beam. 

 

At the end of this lecture, I have given three questions as homework.   

1. An I-Section is having following dimensions and act as a simply supported beam over 

a span of 12 meter. Estimate the maximum impose UDL it can carry. Assume the Self 

Weight of the beam as 1.2 KN/m. The permissible stress in compression and in tension 

is 250N/mm2 

  Section Dimension of I-Section:   Top Flange: 150mm X 20mm 

       Web: 600mm X 10mm 

       Bottom Flange: 100mm X 10mm 

 



2. Re-estimate the impose load (UDL) if two plates of 150mm X 20mm is fixed at top and 

bottom flanges. The self-weight and permissible stress of the beam remains unchanged. 

 

3. A 200mm X 400mm wooden beam is further reinforced with a 

steel plate of 200mm X 15mm at bottom. Find the Moment of 

Resistance of the (i) Wooden beam only (ii) wooden beam with 

steel plate. The permissible bending stresses in steel and wood are 

250 N/mm2 and 150 N/mm2 respectively. Es = 2X105 N/mm2   and 

Et = 0.1X105 N/mm2 

 

 

 

So, thank you very much. This is the end of lecture 13.  


