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Hello friends, welcome back to this online certification course on watershed hydrology. I am 

Rajendra Singh, a professor in the Department of Agriculture and Food Engineering at the 

Indian Institute of Technology Kharagpur. We are currently in Module 2, specifically Lecture 

5, where we will delve further into infiltration, focusing on Part 2 of this topic.  

 

In this lecture, we will build upon what we discussed previously regarding mathematical 

models for estimating infiltration. We will cover the Horton model, the Green and Ampt model, 

the Philip two-term model, and the Richards equation. Let's proceed with our exploration of 

these models. 



 

To provide a recap, in the previous lecture, we discussed that infiltration models are classified 

as empirical, semi-empirical, and physically based. We introduced two empirical models: the 

Kostiakov model and the modified Kostiakov model. Today, we will delve into semi-empirical 

models such as Horton's model, as well as three physically based models: the Green and Ampt 

model, Philip's model, and the Richards equation.  

 

Beginning with the Horton model, it stands as one of the popular infiltration models developed 

by R. E. Horton in 1940 introduced the Horton model, which is based on the observation that 

infiltration begins at some rate f0 and exponentially decreases until it reaches a constant rate 

fc. The infiltration equation proposed by Horton is ft = fc + (f0 – fc )* e^ (-kt) , where k is a 

decay constant. Essentially, this model is based on the concept we have already discussed: an 

infiltration curve that starts at a higher rate f0 , then gradually reaches a constant value fc over 

time. It can also be expressed in terms of F, which represents cumulative infiltration. 

Remember, we are using F for infiltration rate and cumulative infiltration. Therefore, it's 

important to keep these two terms distinct. F  can also be expressed as a function of time. To 

obtain the cumulative infiltration, we integrate Equation 1 with the initial condition f0 at ( t = 

0 ). This resulting equation will provide us with the cumulative infiltration. The Horton model 

is simple in form and fits well to the experimental data, which are the advantages of the Horton 

model.  



 

However, the principal weakness of the model lies in determining reliable values for the 

parameters f0 , fc , and k . If you recall, upon examining the equation, we require these three 

parameters f0 , fc , and k to determine either infiltration rate or cumulative infiltration. 

Hence, the main challenge is obtaining reliable values for these parameters. To estimate these 

parameters, we utilize Equation 1:  ft = fc + (f0 - fc) e^(-kt). If we take the logarithm of this 

equation, we will obtain this form: ln (f - fc) = ln (f0 - ft) - kt. When Equation 3 is plotted on 

semi-logarithmic paper, it results in a straight line, following the form y = mx + c . Here, y 

represents ln (f - fc), m represents the slope k , and c represents the intercept ln (f0 - fc) . Hence, 

the slope is (-k) and the intercept can be determined. For a given infiltration data, fc is taken as 

the lowest value of f when it tends to become constant. And the value of ( f - fc ) at ( t = 0 ) is 

( f0 - fc ), which is the initial value to begin with.  

 

Let's take an example to clarify this further. For an orchard field, the time since the start of the 

rainfall, accumulated infiltration, and observed infiltration rate are given in the table. We will 

develop the Horton model for the orchard and plot the observed and estimated infiltration rates. 

Here's the experimental data provided: the time since the start of the rainfall ranges from 3 

minutes to 65 minutes, and we have accumulated infiltration values in millimetre , starting 



from 0.34 to 3.08 millimetre. We have observed infiltration rates in millimetre per hour 

initially, it is very high at 6.73 and then decreases to 2.32, which is the lowest value. 

 

Now, to determine the Horton model parameters, as we have discussed earlier, we need to fit 

the straight-line relationship, which means plotting ln(f – fc) against time. This implies that we 

need to calculate this relationship. The values provided include time from the start of rainfall 

or infiltration experimentation, accumulating infiltration, and observed infiltration rate. We 

take fc as the lowest value of infiltration rate in the experimental data. So, what we're doing 

here is taking fc equals to 2.32, as listed here. Throughout, fc remains 2.32. Now that we have 

f and fc , we can calculate the value of (f - fc), and then take the logarithm. This resulting value 

is what we need to plot against time. 

 

When we plot ln(f - fc) against time, this is the curve we obtain. As we have already discussed, 

the intercept is ln(f0 - fc) and the slope is -k , derived from this equation. This equation can be 

fitted using Excel, or one can fit it manually. From the plot, the intercept value we obtain is 

ln(f0 - fc), which is 1.0741, as shown here. So, from here, (f0 - fc) is 2.93, or f0 value is 5.25 

millimetre per hour, because we have taken fc value as 2.32 . From the plot, we observe that -

k is approximately -0.0791, meaning k equals 0.0791. So now, we have determined f0 , fc , and 

k. Therefore, the Horton model for the orchard can be expressed as f = 2.32 + 2.93 exp(-



0.0791t) . Here, k is 0.0791, t is in minutes, and f is in millimetre per hour. This is the Horton 

model we have derived using the given data for the orchard.  

 

Now, we are also required to plot these values. So, this is the observed infiltration rate, and this 

is the estimated infiltration rate calculated using the Horton equation we just developed in the 

previous slide.  

 

These values are plotted against the measured values, showing the observed and estimated 

infiltration rates against time. The observed values are represented in blue, while the estimated 

values are shown in orange. As you can observe, from time t onwards, the data fits very well, 

but it doesn't perform as well in the beginning. From this, we can infer that the developed 

Horton model fits the observed data well except for the initial period. As you can see, it doesn't 

match the observed data well during the initial period.  



 

Now, let's move on to the next model, the Green-Ampt model, which is a simple model 

developed by W. H. Green and G. A. Ampt introduced the Green-Ampt model in 1911. Despite 

its age, it remains a popular model even today. This model is based on Darcy's law for 

infiltration into uniform soil with uniform initial moisture content and a negligible depth of 

water pooling on the surface. Several assumptions are made here: the soil is uniform throughout 

the considered soil column, with a consistent initial moisture content. Additionally, there is 

minimal ponding depth on the surface. It's assumed that water infiltrates into the soil, resulting 

in a distinct wetting front that separates the wetted and un-wetted zones. This process aligns 

with what we observed during the infiltration process discussion, where the soil becomes 

wetted due to the saturation transmission and the formation of wetting zones. We also noted 

the presence of a lower boundary wetting front. So, if the wetting front has reached a depth of  

L , it means that above the wetting front, there is wetted soil, and below it, there is un-wetted 

or dry soil with the initial moisture content. This implies that the ponded depth h0 , is negligible.  

 

The image also illustrates this scenario, where water has pooled to a small depth on the soil 

surface h0 , and the wetting front has penetrated to a depth L since infiltration began. This 

delineates the wetted zone above the wetting front and the un-wetted soil below it. So, 

essentially, the pressure gradient causing the flow or downward movement of the wetting front 

consists of three components. Firstly h0 , which represents the depth of ponding water. 



Secondly L , indicating the depth to which the wetting front has penetrated. And finally ψ, 

which denotes the matrix action or soil suction head, pulling water into the dry soil. Hence, 

there is a gravitational force due to the head, and additionally, there is a pulling force due to 

the matrix action. The wetting front moves down into the dry soil due to this matrix action, and 

the soil texture influences the shape of the wetting front. This concept was elucidated by Chow 

in 1988. If we examine the left side of the control volume, as mentioned earlier, it consists of 

uniform soil with uniform initial moisture. If we assume that the initial moisture content was 

θi throughout the entire depth, then obviously, when the wetting front moves down, there will 

be a change in the moisture content. Because a constant head is maintained, this change will 

be negligible. Therefore, in a uniform soil, the moisture content will be uniformly distributed. 

Let's denote the change in moisture content for the entire profile as Δθ . Here, the soil's porosity 

is represented by θ , and the effective porosity is denoted as θe. Additionally, there is a residual 

moisture content in the soil. Thus, we have the residual moisture content, the initial moisture 

content, the change in moisture content, the effective porosity, and the porosity of the soil. So, 

because of the advancing front, the moisture content of the soil is changing, increasing by the 

magnitude of Δθ throughout the entire control volume. 

 

 

The Green-Ampt (GA) model stems from the application of Darcy's law to the wetted zone. 

Darcy's law states that f = K*((h0 + L + ψ) / L) , where K represents the hydraulic conductivity 

and I denotes the hydraulic gradient. Similarly, in the GA model, F represents the infiltration 

rate, K stands for the hydraulic conductivity of the wetted zone, and I signifies the hydraulic 

gradient, which is the head causing the flow and the flow length.  As we previously discussed, 

there are three components here: h0 , L , and ψ. The wetting front has advanced to a depth of  

L , where L represents the distance from the ground surface to the wetting front, and ψ 

represents the capillary suction or soil suction at the wetting front, as illustrated in the previous 

picture. Now, as we mentioned earlier, the ponding depth of water is negligible. So, by 

neglecting h0, this equation can be written in the form  f =  K *((L + ψ) / L) . If Δθ represents 

the change in moisture content as discussed previously, and we also mentioned that the porosity 

of the soil is θ, which indicates the upper limit of the soil's moisture content . This implies that 

when the soil is completely saturated, its moisture content will be equal to its porosity. Thus, 

cumulative infiltration can be calculated as F = Δθ L , where  L represents the depth, and Δθ is 

the change in moisture content. Alternatively, we can express L as L = F/ Δθ . Substituting this 



into equation number 2, we get f =  K *((L + ψ) / L) . By replacing L with  ψ Δθ and 

manipulating, we arrive at the form of the Green-Ampt model.  

 

Equation 3 can also be written as f = K + (a K)/F, where  a is ψ Δθ . 

The advantage of this form lies in its usability with available measured infiltration data. The 

values of 1/F are computed and plotted against time. When plotted, this equation takes the form 

of y = mx + c , where the intercept c represents K  and m represents K as well since we are 

plotting 1/F . Therefore, the slope represents K . By fitting a straight line through the data 

points, we can determine the values of  K and a from this plot.  

 

Let's illustrate this with an example. We will apply the Green-Ampt infiltration model to the 

data provided in Example 1 and plot both the observed and estimated infiltration rates. The 

data includes time, accumulated infiltration, and observed infiltration rates.  



 

In this case, we need to plot F  against 1/F . Since F values are already given, we need to 

calculate the values of 1/F . Once we have 1/F , we plot it against F . 

 

From the plot, we can fit a straight line, as shown here, and determine the values of a and K. 

From the plot, we find that the intercept K is 1. The intercept K is 1.7674, and the slope aK is 

1.3363. Therefore, from here, the  K value is 1.7674 and the a value is 0.76. Consequently, the 

fitted Green-Ampt model for the orchard takes this form.  



 

Additionally, we can utilize the fitted model to obtain estimated infiltration values and then 

plot both the observed and estimated infiltration rates, as shown here.  

 

In this plot, the observed infiltration rate is represented in blue, while the estimated infiltration 

rate using the Green-Ampt model is shown in orange. As you can observe, even in this aspect, 

the model performs better than the Horton model, as it is more physically based, utilizing more 

physical concepts. As evident, the developed Green-Ampt (GA) model fits the observed data 

better than the Horton model, even for the initial period. This demonstrates that the Horton 

model, although physically based, is slightly inferior to the semi-empirical Horton's model we 

discussed earlier. 



 

Now, let's move on to the next model in the physically based category, which is the Philip two-

term model. Philip introduced this model in 1957 for uniform soil with uniform soil moisture 

content and an excess water supply rate at the surface. He found a solution to the flow equation 

in the form of an infinite series. If we examine the assumptions, we see that the soil is uniform 

and the moisture content remains uniform. However, unlike in the case of the Green-Ampt 

model where we assume a negligible ponding depth, here there is an excess water supply at the 

surface. Under these conditions, water is not a limiting factor, and Philip derived an infinite 

series to describe the situation. Due to the rapid convergence of the series, Philip considered 

the first two terms to be sufficient. These two terms constitute the Philip two-term model, hence 

its name.  For this model, the cumulative infiltration F is represented by the equation S t^0.5 + 

At , while the infiltration rate f is given by (1/2)*S t^(-0.5) + A . The first equation provides 

the cumulative infiltration, while the second one describes the infiltration rate. Here, the 

parameter S represents sorptivity , which is a function of the initial and surface water contents 

of the soil, as well as the soil water diffusivity. On the other hand, A is a parameter that depends 

on soil properties. Both A and S are soil properties. 

 

Now, turning our attention to sorptivity, Philip described it as a measure of the capacity of the 

medium to absorb or desorb liquid through capillarity alone, with only capillary forces at play. 

Sorptivity, therefore, represents the amount of liquid, typically water, that a soil medium can 



absorb or desorb. Philip proposed a method for determining sorptivity from horizontal 

infiltration, where water flow is primarily controlled by capillary absorption. He proposed the 

following relationship for sorptivity: S = F/ √ t . It's important to note that this determination is 

specifically for horizontal infiltration. This distinction is necessary because, as we discussed 

during the infiltration process description, vertical infiltration is predominantly influenced by 

gravitational forces. Therefore, in Philip's definition of sorptivity, capillary forces are the main 

factor at play. So, this is why we need measurements of horizontal infiltration. When the flow 

is primarily controlled by capillary absorption, the relationship S = F/ √ t holds true. For 

parameter A , Philip in 1974 recommended a value of 0.363k, as it resulted in a realistic 

estimation of infiltration rate. However, he cautioned against the long-term use of the PTT 

model. This implies that if you intend to use a model for an extended period, the Philip two-

term model might not be suitable. Nonetheless, it performs well for short periods. 

 

Now, another term that arises is soil water diffusivity, which is defined by the equation D(θ) = 

K(h)*(dh/dθ) , where K(h) is the hydraulic conductivity, a function of pressure head, and 

sorptivity can be found if D(θ) and h(θ)  are known. If you have studied soil science or 

conducted experiments using the pressure plate apparatus, you might recall that the moisture 

soil retention curve obtained from experimentation gives us the soil retention curve or h(θ) 

relationship, also known as h(ψ) or h(θ) . This relationship provides the relationship between 

pressure head and soil moisture content. Once we have the h(θ) relationship, we can utilize 

several models, with one very popular model being the van Genuchten model. Using the van 

Genuchten model, we can develop the k (θ) relationship. Therefore, the h(θ) relationship can 

be obtained from pressure plate experimentation, and based on that, we can fit the data and 

derive the K (θ)  relationship. Consequently, when we have the h(θ) and K (θ)  relationships, 

we can express k in terms of h . So, this is what is being utilized here. With this knowledge, 

we can determine D(θ) and h(θ) , and if D(θ) and h(θ)   are known, S can also be obtained for 

any given soil from experiments. The parameters S and A can be obtained from empirical fitting 

if infiltration observations are available, similar to previous equations like Horton and Green-

Ampt. The observed values of f are plotted against the values of t^{-0.5} , as we previously 

discussed. This relationship is represented by the equation f =(1/2)*S t^(-0.5) + A . When we 

plot f against this, we can observe a linear relationship. The intercept of this line represents A 

, while the slope is S/2 . 



 

Now, let's consider Example 3, where we fit the PTT infiltration model to the data provided in 

Example 1 and plot both the observed and estimated infiltration rates. We've already reviewed 

this data earlier, which includes the time since the start of rainfall (denoted as t in minutes), 

ranging from 3 to 65, along with the corresponding infiltration rate values in millimetre per 

hour. Additionally, cumulative infiltration values were provided, but they are not required for 

the PTT model, so they are not included in this analysis. 

 

To fit the PTT model, we need to plot f against t^{-0.5} . Although f remains unchanged in this 

case, we need to calculate t^{-0.5} for each time value. Once we have these values, we can plot 

f against t^{-0.5} , as shown in the graph.  



 

Upon plotting, we obtain a straight line relationship, represented by the equation y = 7. 97x + 

1.16  . The equation obtained through Excel fitting is f = 7.97x +1.16 . As mentioned, Excel 

was used to generate this equation, but one can also utilize the least square method or other 

software, or even manually calculate and fit the equation using a calculator. Recalling the 

equation form f =(1/2)*S t^(-0.5) + A , we know that the slope of the line is S/2 and the intercept 

is A , with their values already provided. The intercept value is 1.16, indicating that A = 1.16 , 

and the slope S/2 is 7.97. Hence, the value of S  comes out to be 15.94. With these values for 

A and S , we can plug them into the equation, resulting in f = 7.97t^{-0.5}+1.16 . So, the PTT 

model for the orchard data yields f = 7.97t^{-0.5}+1.16  . 

 

Utilizing this model, we can obtain estimated infiltration values for various times and then plot 

the observed infiltration rate alongside the estimated infiltration rate, as depicted here.  



 

The figure illustrates the plot of observed and estimated infiltration rates against time using the 

PTT model. As observed, the blue line represents the observed infiltration rate, while the 

orange line represents the estimated infiltration. Recall the previous equations, such as the 

Horton model, where a near-perfect match between the observed infiltration rate and the 

model's estimation was evident after 10 minutes. Similarly, in the case of the Green-Ampt 

model, a good match was observed during the initial phases. However, in this instance, as 

illustrated, the PTT model tends to either underestimate or overestimate infiltration rates even 

beyond the 10-minute mark. Here, it overestimates in this section and underestimates in that 

part. So, while it fits the data reasonably well, it doesn't perform as effectively as the previous 

two models—the Horton model or the Green-Ampt model. This indicates that although it fits 

the observed data adequately, it doesn't match the performance of the Horton or Green-Ampt 

models. 

 

Now, let's move on to the final model, Richards equation, which was introduced in 1931. 

Richards equation is the most widely used physically based infiltration model. It utilizes the 

one-dimensional continuity equation and Darcy's flow equation to derive the infiltration 

equation. This model is among the most prominent physically based infiltration models 

available. It operates on the principle that soil hydraulic conductivity k increases with the 



moisture content θ. When plotting k against θ for different soils, we observe a characteristic 

curve. Additionally, hydraulic conductivity decreases with soil suction ψ , which is the matric 

potential head. As previously mentioned, we can obtain h - θ data from soil moisture retention 

experiments and then use various models to fit the k - θ data. 

So, we can also obtain the values of k versus h and k versus θ . By combining Darcy's law and 

the continuity equation, we can express the Richards equation in terms of moisture content. 

This equation is formulated in both moisture content and head, given as δθ/δt  = (δ/δz) *( D(θ)*( 

δθ/δz) + K(θ) . Here, D(θ) represents soil water diffusivity, which we previously discussed 

while exploring the PTT model. We noted that D(θ)  can be obtained if we have the k- h or k - 

θ relationship, which can be derived using pressure plate experiments and fitting the k- θ model. 

By utilizing this method, we can assess infiltration both in the field and through various 

modeling approaches, whether empirical, semi-empirical, or physically based. With this, we 

conclude today's lecture .  

 

Thank you all for listening attentively. Please feel free to provide feedback or raise any 

questions you may have, which can be addressed in our discussion forum. Thank you once 

again. 

 



 

 

 

 

 

 

  


