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Hello friends, welcome back to this online certification course on watershed hydrology. I am
Rajendra Singh, a professor in the Department of Agriculture and Food Engineering at the
Indian Institute of Technology Kharagpur. We are currently in Module 2, specifically Lecture
5, where we will delve further into infiltration, focusing on Part 2 of this topic.
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In this lecture, we will build upon what we discussed previously regarding mathematical
models for estimating infiltration. We will cover the Horton model, the Green and Ampt model,
the Philip two-term model, and the Richards equation. Let's proceed with our exploration of
these models.
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To provide a recap, in the previous lecture, we discussed that infiltration models are classified
as empirical, semi-empirical, and physically based. We introduced two empirical models: the
Kostiakov model and the modified Kostiakov model. Today, we will delve into semi-empirical
models such as Horton's model, as well as three physically based models: the Green and Ampt
model, Philip's model, and the Richards equation.

Mathematical Models

O Infiltration modeis are usually classified as empirical, semi-empirical and physical-based

1. Emparical Modeds
O Kostakov (1932)
d Modified Kostiakov (Smith, 1972) .

2. Semi-ampearical Models
d Horton (1838, 1840)

3. Physically-Based Models
J Green and Ampt {1911)
O Phillsp (1957, 1969)
J Richards (1931)

Beginning with the Horton model, it stands as one of the popular infiltration models developed
by R. E. Horton in 1940 introduced the Horton model, which is based on the observation that
infiltration begins at some rate fO and exponentially decreases until it reaches a constant rate
fc. The infiltration equation proposed by Horton is ft = fc + (f0 — fc )* e” (-kt) , where k is a
decay constant. Essentially, this model is based on the concept we have already discussed: an
infiltration curve that starts at a higher rate fO , then gradually reaches a constant value fc over
time. It can also be expressed in terms of F, which represents cumulative infiltration.
Remember, we are using F for infiltration rate and cumulative infiltration. Therefore, it's
important to keep these two terms distinct. F can also be expressed as a function of time. To
obtain the cumulative infiltration, we integrate Equation 1 with the initial condition fO at (t =
0 ). This resulting equation will provide us with the cumulative infiltration. The Horton model
is simple in form and fits well to the experimental data, which are the advantages of the Horton
model.



Horton Model
J One of the popul ful on dels, developed by R.E. Horton in 1840
J Based on the fact that infiltration begins at some fate 1, and exponentially decreases untd o

reaches a constant rate 1,
=L+ (f-tje ™ M

Where k is a decay constant [T7]

1t can also be expressed in terms of F/i; a function of {
3 Upon integrating (1) with the condition F=0att=0

Fottelilyt)(1 e @ )

3 The Horton model is simple in form and fits well to the experimental data

However, the principal weakness of the model lies in determining reliable values for the
parameters fO , fc , and k . If you recall, upon examining the equation, we require these three
parameters fO , fc , and k to determine either infiltration rate or cumulative infiltration.

Hence, the main challenge is obtaining reliable values for these parameters. To estimate these
parameters, we utilize Equation 1: ft = fc + (fO - fc) e”(-kt). If we take the logarithm of this
equation, we will obtain this form: In (f - fc) = In (fO - ft) - kt. When Equation 3 is plotted on
semi-logarithmic paper, it results in a straight line, following the formy = mx + c . Here, y
represents In (f - fc), m represents the slope k , and ¢ represents the intercept In (fO - fc) . Hence,
the slope is (-K) and the intercept can be determined. For a given infiltration data, fc is taken as
the lowest value of f when it tends to become constant. And the value of (f-fc)at(t=0)is
(1O - fc ), which is the initial value to begin with.

Horton Model

O The principal weakness of the model is in the determination of refiable values of its parameters
fy, 1, andd K

2 To estimate the parameters, we may take the loqum of Eqi) [N =1 +(1,-)e ™
0 (F—10% b (8- 1) <kt ) -

e =

2 Equation (3), when plofied on semi-log paper, represents a straight line whose laloov_ ~k and

Intercept In (1L-1) can readily be determined
J For given mfiltration data. I is taken as the lowest value of I when i tends to become constant

J The value of (T-T)att=0is (1,-1)

Let's take an example to clarify this further. For an orchard field, the time since the start of the
rainfall, accumulated infiltration, and observed infiltration rate are given in the table. We will
develop the Horton model for the orchard and plot the observed and estimated infiltration rates.
Here's the experimental data provided: the time since the start of the rainfall ranges from 3
minutes to 65 minutes, and we have accumulated infiltration values in millimetre , starting



from 0.34 to 3.08 millimetre. We have observed infiltration rates in millimetre per hour
initially, it is very high at 6.73 and then decreases to 2.32, which is the lowest value.

Solution:

For determining the Horton model parameters, we need to fit the straight line
relationship, In (f = 1) =in (f,- 1) = kt, Le., we need to plot In (1-1) against time Lowest value of T is
o o taken as f,
[ Time from start of rainfal!  Accumulated infiliration | Observed infillration e | |
_{t, mim) Fomm) Amety 7
6.7

3e
343

Now, to determine the Horton model parameters, as we have discussed earlier, we need to fit
the straight-line relationship, which means plotting In(f — fc) against time. This implies that we
need to calculate this relationship. The values provided include time from the start of rainfall
or infiltration experimentation, accumulating infiltration, and observed infiltration rate. We
take fc as the lowest value of infiltration rate in the experimental data. So, what we're doing
here is taking fc equals to 2.32, as listed here. Throughout, fc remains 2.32. Now that we have
f and fc , we can calculate the value of (f - fc), and then take the logarithm. This resulting value
is what we need to plot against time.

L]
Solution:

For determining the Horton model parameters, we need to fit the straight line
relationship, In (f = 1) =in (f,- 1) = kt, Le., we need to plot In (1-1) against time Lowest value of T is
o o taken as f,
[ Time from start of rainfal!  Accumulated infiliration | Observed infillration e | |
_{t, mim) Fomm) Amevty /7 |
6.7

LA

When we plot In(f - fc) against time, this is the curve we obtain. As we have already discussed,
the intercept is In(f0 - fc) and the slope is -k , derived from this equation. This equation can be
fitted using Excel, or one can fit it manually. From the plot, the intercept value we obtain is
In(fO - fc), which is 1.0741, as shown here. So, from here, (f0 - fc) is 2.93, or f0 value is 5.25
millimetre per hour, because we have taken fc value as 2.32 . From the plot, we observe that -
k is approximately -0.0791, meaning k equals 0.0791. So now, we have determined f0, fc , and
k. Therefore, the Horton model for the orchard can be expressed as f = 2.32 + 2.93 exp(-



0.0791t) . Here, k is 0.0791, t is in minutes, and f is in millimetre per hour. This is the Horton
model we have derived using the given data for the orchard.

Solution: ~
y®-00791x+1.0741 )
J Then, In (f - 1) is plotted against ‘t' Py 2 sl

Intercept = in if, - f,)|

il R

J From the plot, infercept In (I, - €)= 1.0741,

d Hence, (f,~1)»=29) or

1, % 5.25 mm/h (as 1, = 2.32 mevh)
m—

J Also, from the plot, slope - k = -00791 or k = 0.0791

Q Hence, Horton model for the grehard is
1=232+293exp (- 007911
Where, 1 s in min and T is m‘mmm_

Now, we are also required to plot these values. So, this is the observed infiltration rate, and this
is the estimated infiltration rate calculated using the Horton equation we just developed in the
previous slide.

Solution:

J The table for the observed and the estimated infiltration is given below
& The estimated infiltration s calculated from the developed Horton equation for different 1

Teme since start of ramnfall | Observed mfiltration rate ,’ [ 7 Estimated infiltration
(Y, min) LL mmihy — (i MMV 1)
) #79 T
] 429
. '
19 1 ) 43 | 183
.‘A-',
Py

25
kA
*

These values are plotted against the measured values, showing the observed and estimated
infiltration rates against time. The observed values are represented in blue, while the estimated
values are shown in orange. As you can observe, from time t onwards, the data fits very well,
but it doesn't perform as well in the beginning. From this, we can infer that the developed
Horton model fits the observed data well except for the initial period. As you can see, it doesn't
match the observed data well during the initial period.



Solution:

3 Figure shows the plot of the observed and estimated Infillration rales against time

g
g
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%
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Time from star of raimfadl (T, men)
" As evident, the developed
&7 Dtserved nfiiaton rate (f. mnih) —&- Estenated inSEaioh Mor. mmvh Horton model fits the
observed data well, except
for the initial period

Now, let's move on to the next model, the Green-Ampt model, which is a simple model
developed by W. H. Green and G. A. Ampt introduced the Green-Ampt model in 1911. Despite
its age, it remains a popular model even today. This model is based on Darcy's law for
infiltration into uniform soil with uniform initial moisture content and a negligible depth of
water pooling on the surface. Several assumptions are made here: the soil is uniform throughout
the considered soil column, with a consistent initial moisture content. Additionally, there is
minimal ponding depth on the surface. It's assumed that water infiltrates into the soil, resulting
in a distinct wetting front that separates the wetted and un-wetted zones. This process aligns
with what we observed during the infiltration process discussion, where the soil becomes
wetted due to the saturation transmission and the formation of wetting zones. We also noted
the presence of a lower boundary wetting front. So, if the wetting front has reached a depth of
L , it means that above the wetting front, there is wetted soil, and below it, there is un-wetted
or dry soil with the initial moisture content. This implies that the ponded depth hO , is negligible.

Neglhgible ponded depth
p———1 =
s

Green-Ampt (GA) Model .
» 3 P Zhe)

J A simple model, devoloped by W H. Green and G.A. Ampt (1911)

d Itis based on Darcy's law for infiltration into uniform soil with uniform

initial moisture content due 10 a pool of negligible depth of wates
O The water ks assumed to infiltrate into the soil

O The infillrated water defines a sharply welling front separating Ihe

wetted and unvwetted zones

The image also illustrates this scenario, where water has pooled to a small depth on the soil
surface h0 , and the wetting front has penetrated to a depth L since infiltration began. This
delineates the wetted zone above the wetting front and the un-wetted soil below it. So,
essentially, the pressure gradient causing the flow or downward movement of the wetting front
consists of three components. Firstly hO , which represents the depth of ponding water.



Secondly L , indicating the depth to which the wetting front has penetrated. And finally v,
which denotes the matrix action or soil suction head, pulling water into the dry soil. Hence,
there is a gravitational force due to the head, and additionally, there is a pulling force due to
the matrix action. The wetting front moves down into the dry soil due to this matrix action, and
the soil texture influences the shape of the wetting front. This concept was elucidated by Chow
in 1988. If we examine the left side of the control volume, as mentioned earlier, it consists of
uniform soil with uniform initial moisture. If we assume that the initial moisture content was
i throughout the entire depth, then obviously, when the wetting front moves down, there will
be a change in the moisture content. Because a constant head is maintained, this change will
be negligible. Therefore, in a uniform soil, the moisture content will be uniformly distributed.
Let's denote the change in moisture content for the entire profile as A0 . Here, the soil's porosity
is represented by 6 , and the effective porosity is denoted as 6e. Additionally, there is a residual
moisture content in the soil. Thus, we have the residual moisture content, the initial moisture
content, the change in moisture content, the effective porosity, and the porosity of the soil. So,
because of the advancing front, the moisture content of the soil is changing, increasing by the
magnitude of A6 throughout the entire control volume.

il
Green-Ampt (GA) Model
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Chow (1988)

The Green-Ampt (GA) model stems from the application of Darcy's law to the wetted zone.
Darcy's law states that f = K*((h0 + L + ) / L) , where K represents the hydraulic conductivity
and | denotes the hydraulic gradient. Similarly, in the GA model, F represents the infiltration
rate, K stands for the hydraulic conductivity of the wetted zone, and 1 signifies the hydraulic
gradient, which is the head causing the flow and the flow length. As we previously discussed,
there are three components here: hO, L , and y. The wetting front has advanced to a depth of
L , where L represents the distance from the ground surface to the wetting front, and
represents the capillary suction or soil suction at the wetting front, as illustrated in the previous
picture. Now, as we mentioned earlier, the ponding depth of water is negligible. So, by
neglecting hO, this equation can be written in the form f= K *((L + y) /L) . If A0 represents
the change in moisture content as discussed previously, and we also mentioned that the porosity
of the soil is 8, which indicates the upper limit of the soil's moisture content . This implies that
when the soil is completely saturated, its moisture content will be equal to its porosity. Thus,
cumulative infiltration can be calculated as F = A9 L , where L represents the depth, and A6 is
the change in moisture content. Alternatively, we can express L as L = F/ A6 . Substituting this



into equation number 2, we get f = K *((L + y) / L) . By replacing L with y A6 and
manipulating, we arrive at the form of the Green-Ampt model.
]

Green-Ampt (GA) Model

J The GA model results from the application of Darcy's Law 1o the wetied Zone as

'=K’I# 1)

Where K = Hydraulic conductivity of the wetted zone;
L = Distance from the ground surface to the welting front;
W = Capillary suction (soil suction) at the wetting front
d Noglochng}jnogllqlbh ponded depth ol_wihv).

Lo ::5
reg=t 2)

O I A is the change in the moisture content {Note that the upper limit of Aorn povouu}. then
Cumulative mhluillcnf = A0 Lorlw r-eo_
J Substituting L in (2),

ek [0

Equation 3 can also be written as f = K + (a K)/F, where aisy A0 .

The advantage of this form lies in its usability with available measured infiltration data. The
values of 1/F are computed and plotted against time. When plotted, this equation takes the form
of y = mx + ¢, where the intercept c represents K and m represents K as well since we are
plotting 1/F . Therefore, the slope represents K . By fitting a straight line through the data
points, we can determine the values of K and a from this plot.

il
Green-Ampt (GA) Model

O From equation (3} we can write
uk A\
i= 5 . T (4)

Where a = A8
SRR

) %

Q ¥ measured infiltrabon data ae avallable, the values of Y'F are computed and plotted against { (figure)

O By fiting a straight line through the data points, the values of 'K’ and 'a’ are obtained

Let's illustrate this with an example. We will apply the Green-Ampt infiltration model to the
data provided in Example 1 and plot both the observed and estimated infiltration rates. The
data includes time, accumulated infiltration, and observed infiltration rates.



Example 2

J Fit the Green-Ampt infiltration model to the data In Example j Also, plot the observed and estimated

infiltration rates.

Time since start of rainfas (1, mm)‘ Accumutated infiitration (F, mm) | Observed infiltration rate (f, mmwh)
{ [ 034 | 673 ]
‘

T 044 361
£
| 0 i

0 56

1.2

143

In this case, we need to plot F against 1/F . Since F values are already given, we need to
calculate the values of 1/F . Once we have 1/F , we plot it against F .

il
Solution:
For fitting the Green-Ampt model, we need to plot f against 1/F._
Hence, estimating 1/F in the table

[ Tume trom start of raintall | Accumulated infiltration | Obsaeved Infitration rate
(&, rin) (F, mm) (1, meh) -

3 0M 673
.

5 0da 561

4 4 ~ 4 :

10 065 4
. '

15 096 31

0 129 27

143

105
1 86

207
228

From the plot, we can fit a straight line, as shown here, and determine the values of a and K.
From the plot, we find that the intercept K is 1. The intercept K is 1.7674, and the slope aK is
1.3363. Therefore, from here, the K value is 1.7674 and the a value is 0.76. Consequently, the
fitted Green-Ampt model for the orchard takes this form.



=9
Solution: E ;

=4 y = 1.3363x + 1.7674 )
O Plotting f against 1/F £,

5. : :
Q From the plot. 12 o Slope = aK

Intercept, K » 1.7674 g ' }‘Mlevctpl =K
L]

Slope, aK = 13363
Hence,

°
o

as " k' W 25 n
as076

3 Thus, the Green-Ampl model tor the orchard is

RS

F=17674 «

Additionally, we can utilize the fitted model to obtain estimated infiltration values and then
plot both the observed and estimated infiltration rates, as shown here.

Solution:

J The tabile for the observed and the estimated infiltration s given below

3 The estimated infiltration is calculated from the developed Green-Ampt equation for delferent t

N
Time trom start of rainfall Obmerved miiltration rate | Estimated sfiltration
41, min) . mmh) 4 Alga, menth)
) 073 570

Y
170
)16

267

In this plot, the observed infiltration rate is represented in blue, while the estimated infiltration
rate using the Green-Ampt model is shown in orange. As you can observe, even in this aspect,
the model performs better than the Horton model, as it is more physically based, utilizing more
physical concepts. As evident, the developed Green-Ampt (GA) model fits the observed data
better than the Horton model, even for the initial period. This demonstrates that the Horton
model, although physically based, is slightly inferior to the semi-empirical Horton's model we
discussed earlier.



Solution:

3 Figure shows the plot of the observed and estimated Infitlration rales against time
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Now, let's move on to the next model in the physically based category, which is the Philip two-
term model. Philip introduced this model in 1957 for uniform soil with uniform soil moisture
content and an excess water supply rate at the surface. He found a solution to the flow equation
in the form of an infinite series. If we examine the assumptions, we see that the soil is uniform
and the moisture content remains uniform. However, unlike in the case of the Green-Ampt
model where we assume a negligible ponding depth, here there is an excess water supply at the
surface. Under these conditions, water is not a limiting factor, and Philip derived an infinite
series to describe the situation. Due to the rapid convergence of the series, Philip considered
the first two terms to be sufficient. These two terms constitute the Philip two-term model, hence
its name. For this model, the cumulative infiltration F is represented by the equation S t*0.5 +
At , while the infiltration rate f is given by (1/2)*S t*(-0.5) + A . The first equation provides
the cumulative infiltration, while the second one describes the infiltration rate. Here, the
parameter S represents sorptivity , which is a function of the initial and surface water contents
of the soil, as well as the soil water diffusivity. On the other hand, A is a parameter that depends
on soil properties. Both A and S are soil properties.

Philip Two-Term Model

Q For uniform soll with a uniform_sofl-motsiure content and oxcess water supply rate at the
surface, Philip (1957) found a solution to the flow equation in the form of an infinite series.
QO Because of rapid convergence, the first two terms of the series are considered sufficient and

constitute the Philip two-term (PTT) moded,

F =5t

e A1 (b))

/= I_\l = (2)

where § = sorptivity, a function of initial and surface waler contents of the soll
and soil-water deffusivity; and
A = parameter depending upon o4 properties

Now, turning our attention to sorptivity, Philip described it as a measure of the capacity of the
medium to absorb or desorb liquid through capillarity alone, with only capillary forces at play.
Sorptivity, therefore, represents the amount of liquid, typically water, that a soil medium can



absorb or desorb. Philip proposed a method for determining sorptivity from horizontal
infiltration, where water flow is primarily controlled by capillary absorption. He proposed the
following relationship for sorptivity: S = F/ v t. It's important to note that this determination is
specifically for horizontal infiltration. This distinction is necessary because, as we discussed
during the infiltration process description, vertical infiltration is predominantly influenced by
gravitational forces. Therefore, in Philip's definition of sorptivity, capillary forces are the main
factor at play. So, this is why we need measurements of horizontal infiltration. When the flow
is primarily controlled by capillary absorption, the relationship S = F/ v t holds true. For
parameter A , Philip in 1974 recommended a value of 0.363k, as it resulted in a realistic
estimation of infiltration rate. However, he cautioned against the long-term use of the PTT
model. This implies that if you intend to use a model for an extended period, the Philip two-
term model might not be suitable. Nonetheless, it performs well for short periods.

Philip Two-Term Model

QO Philip described sorptivily as a measure of the capacity of the medium to absorb or desorb
lquid by capillarity
O Me showed that sorplivity can be determined from horizontal infiltration when walter flow is
m—————— TR e———
n
mostly controlied by _ca{)tlhry absorption, and proposed the following relationship

S=FI (3)_

3 For parameter A, Philip (1974) recommended a value of 0,363K, as It resulted in a realistic estimation
- - -
of the Infiltration rate =

d However, he cautioned against the use of PTT model for large imes

Now, another term that arises is soil water diffusivity, which is defined by the equation D(0) =
K(h)*(dh/do) , where K(h) is the hydraulic conductivity, a function of pressure head, and
sorptivity can be found if D(0) and h(6) are known. If you have studied soil science or
conducted experiments using the pressure plate apparatus, you might recall that the moisture
soil retention curve obtained from experimentation gives us the soil retention curve or h(6)
relationship, also known as h(y) or h(0) . This relationship provides the relationship between
pressure head and soil moisture content. Once we have the h(0) relationship, we can utilize
several models, with one very popular model being the van Genuchten model. Using the van
Genuchten model, we can develop the k (0) relationship. Therefore, the h(6) relationship can
be obtained from pressure plate experimentation, and based on that, we can fit the data and
derive the K (0) relationship. Consequently, when we have the h(0) and K (0) relationships,
we can express k in terms of h . So, this is what is being utilized here. With this knowledge,
we can determine D(0) and h(0) , and if D(6) and h(6) are known, S can also be obtained for
any given soil from experiments. The parameters S and A can be obtained from empirical fitting
if infiltration observations are available, similar to previous equations like Horton and Green-
Ampt. The observed values of f are plotted against the values of t*{-0.5} , as we previously
discussed. This relationship is represented by the equation f =(1/2)*S t*(-0.5) + A . When we
plot f against this, we can observe a linear relationship. The intercept of this line represents A
, While the slope is S/2 .



Philip Two-Term Model

e

O Sodl-Water Diffusivity

 /
7 v dh

DI8)= K(h)-
L) (I(/()

where, K(h) is hydraulic conductivity as a function of pressure head
¢ >
Q Sorplivity, S, can be found i D(0) and @) are known
-— — -

J Parameters S and A can be obtained from empirical fitting if infiltration observations are
available

O The observed values of { are plotied against the values of 17 on arithmetic paper and a
straight line is fitted through the data points

U According to Equation (2), v‘!- ! Vi Vil the Iintercept of this line is A, and the slope is 572

Now, let's consider Example 3, where we fit the PTT infiltration model to the data provided in
Example 1 and plot both the observed and estimated infiltration rates. We've already reviewed
this data earlier, which includes the time since the start of rainfall (denoted as t in minutes),
ranging from 3 to 65, along with the corresponding infiltration rate values in millimetre per
hour. Additionally, cumulative infiltration values were provided, but they are not required for
the PTT model, so they are not included in this analysis.

il
Example 3

J Fit the PTT infiltration model to the data in Exampie 1. Also, plot the observed and estimated infiltration
rates.

o v = 2
| .

Time since start of rainfa® (1, minj | Observed infiltration oul, mmih)
{ \ = [ 67 e

' ~
‘1 1)
[
10 | rd)

B |
|

To fit the PTT model, we need to plot f against t*{-0.5} . Although f remains unchanged in this
case, we need to calculate t"{-0.5} for each time value. Once we have these values, we can plot
f against t*{-0.5} , as shown in the graph.
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Solution:

For fitting the PTT, we need to piot f against t°*

[ Tme trom start of raintall | Obsecved infiftration rate
(L min) {1, mmih) -
3. >

Upon plotting, we obtain a straight line relationship, represented by the equationy = 7. 97x +
1.16 . The equation obtained through Excel fitting is f = 7.97x +1.16 . As mentioned, Excel
was used to generate this equation, but one can also utilize the least square method or other
software, or even manually calculate and fit the equation using a calculator. Recalling the
equation form f =(1/2)*S t*(-0.5) + A, we know that the slope of the line is S/2 and the intercept
is A, with their values already provided. The intercept value is 1.16, indicating that A = 1.16 ,
and the slope S/2 is 7.97. Hence, the value of S comes out to be 15.94. With these values for
A and S, we can plug them into the equation, resulting in f = 7.97t"{-0.5}+1.16 . So, the PTT
model for the orchard data yields f = 7.97t"{-0.5}+1.16 .

Solution:

-

J Plotting f against 4

QO From the plot. gt Slope = 512
Intercept, A= 1.16
Slope, S/2=797

Hence, S=1594 = o

OOserved AR LGN Tame 1 mew i

}»k\(«cem A

O Thus, the PTT mode! for the orchard 6

1
[=550""+A
2

[=7970% 0 06 )

1 |
V| \

Utilizing this model, we can obtain estimated infiltration values for various times and then plot
the observed infiltration rate alongside the estimated infiltration rate, as depicted here.



Solution:
dJ The table for the observed and the estimated infiltration is given below

J The estimated infitration s caiculated from the developed PTT mode! for different 1

Time trom start of rainfall Observed miiitration rate | " Extimated sfiliration )
{1, min) [ mmm) e mmib)
) 673 5.70

B
3 68

The figure illustrates the plot of observed and estimated infiltration rates against time using the
PTT model. As observed, the blue line represents the observed infiltration rate, while the
orange line represents the estimated infiltration. Recall the previous equations, such as the
Horton model, where a near-perfect match between the observed infiltration rate and the
model's estimation was evident after 10 minutes. Similarly, in the case of the Green-Ampt
model, a good match was observed during the initial phases. However, in this instance, as
illustrated, the PTT model tends to either underestimate or overestimate infiltration rates even
beyond the 10-minute mark. Here, it overestimates in this section and underestimates in that
part. So, while it fits the data reasonably well, it doesn't perform as effectively as the previous
two models—the Horton model or the Green-Ampt model. This indicates that although it fits
the observed data adequately, it doesn't match the performance of the Horton or Green-Ampt
models.

Solution:

3 Figure shows the plot of the observed and estimated Infittration rates against time by the PTT model
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As evident, the developed PTT
maodel fits the observed data
well .
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Now, let's move on to the final model, Richards equation, which was introduced in 1931.
Richards equation is the most widely used physically based infiltration model. It utilizes the
one-dimensional continuity equation and Darcy's flow equation to derive the infiltration
equation. This model is among the most prominent physically based infiltration models
available. It operates on the principle that soil hydraulic conductivity k increases with the



moisture content 6. When plotting k against 6 for different soils, we observe a characteristic
curve. Additionally, hydraulic conductivity decreases with soil suction vy , which is the matric
potential head. As previously mentioned, we can obtain h - 6 data from soil moisture retention
experiments and then use various models to fit the k - 6 data.

So, we can also obtain the values of k versus h and k versus 0 . By combining Darcy's law and
the continuity equation, we can express the Richards equation in terms of moisture content.
This equation is formulated in both moisture content and head, given as 60/t = (6/0z) *( D(0)*(
00/6z) + K(0) . Here, D(0) represents soil water diffusivity, which we previously discussed
while exploring the PTT model. We noted that D(0) can be obtained if we have the k- h or k -
0 relationship, which can be derived using pressure plate experiments and fitting the k- 6 model.
By utilizing this method, we can assess infiltration both in the field and through various
modeling approaches, whether empirical, semi-empirical, or physically based. With this, we
conclude today's lecture .

Richards Equation (1931)

1t is the most popular unymguuyj!mvml a}i\l-llvrrnn_gn mogel. It uses the
one-dimensional continuty equation with Darcy's Now equation to
derive the infiltration egquation
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Thank you all for listening attentively. Please feel free to provide feedback or raise any
questions you may have, which can be addressed in our discussion forum. Thank you once
again.







