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Hello friends, welcome back to this online certification course on Watershed Hydrology. I am 

Rajendra Singh, a professor in the Department of Agriculture and Food Engineering at the 

Indian Institute of Technology Kharagpur. We are in module 3, this is lecture number 3, and 

the topic is Hydrological Model Calibration, Validation and Evaluation. So, in this lecture, we 

will talk about model calibration, model validation, data requirements, and test procedures, as 

well as model evaluation and the calibration process. Starting with calibration, model 

calibration is the process of estimating model parameters. Here, model predictions or output 

are compared with the observed data for a given set of showed conditions or for a set of fixed 

model parameters. So, as we also discussed earlier, in the modelling protocol there are two 

major steps: calibration and validation. 



 

Now, we are talking about calibration. Here, we change the model parameters, tune them, and 

then run the simulation. Once the simulation is completed, we compare the model prediction, 

the simulated output, with the observed output. If we are satisfied, fine. Of course, we have to 

have some performance criteria, which we will discuss later, but if we are not satisfied, then 

obviously, we go back and tune the model parameters and then run the simulation again. This 

process continues unless and until the model is satisfied with the performance of its model. 

So, this process is a very vital step because that is where you really tune and correct the model 

parameters so that you are able to simulate the processes correctly. And as far as model 

parameters go, there are two types: physical parameters and process parameters. Now, physical 

parameters represent the physical properties of the catchment, and these are usually 

measurable. That means you can measure these parameters; for example, catchment area 

surface slope. So, obviously, with a little bit of experimental effort, you can measure these 

parameters. On the other hand, process parameters represent the catchment characteristics, and 

these may not be measurable. Usually, they are non-measurable. 

For example, the average depth of water storage capacity, Manning's roughness coefficient—I 

mean you can do laboratory experiments and get these values, but basically, you cannot 

measure in the field conditions what the Manning's roughness coefficient is at a particular 

place. It is not really possible to go and measure. Similarly, there are some physical parameters 

such as hydraulic conductivity and porosity which are measurable in theory, but difficult to 

measure in practice, and hence are often calibrated. That is simply because, as we can see, 

hydraulic conductivity and porosity are soil characteristics. And in our earlier discussion, we 

have seen that the soil characteristics change every few meters or few hundred meters within 

the catchment or a basin or a watershed. So, obviously, in order to get a correct value of 

hydraulic conductivity or porosity for the entire basin, you have to have hundreds of 

experiments conducted, which is very time-consuming and, of course, resource-intensive. 



 

So, that is why instead of measuring them, we take the knowing of the soil texture. We know 

the range of hydraulic conductivity or porosity, and then we try to calibrate these parameters 

so that we get the right value of the parameter. That is the process of in the ah, I mean, I mean, 

in the process of this calibration ah, we change the parameters as we discussed, and then we 

measure, we compare the model results with the observed field data, and then we say whether 

our model is calibrated or not. 

So, that is the calibration process. Then comes model validation, which is the next step and of 

course, a crucial step in assessing the accuracy and reliability of the hydrological model. So, in 

the calibration process, we have calibrated the model by playing with the model parameters 

and then obviously, we also want to see that when we are not changing the model parameter, 

how the model performs and that step is validation. So, it involves running a model using input 

parameters determined during the calibration process. Once we say the model is calibrated, that 

means we say that our parameter values are calibrated, and then we do not change those 

calibrated model parameters and then we run the model with a different set of data ah during 

validation. 

 

And the model prediction or output is compared with the observed data to determine how well 

the model simulates the actual hydrological process in a specific area. So, of course, this 

process can you run the model then you compare the data the simulated data with the observed 



data and really see whether your model is doing good or bad. And as I said that we are not able 

to not allowed to change the model parameter due to validation run. So, if you are not satisfied 

then of course, you have to go back to calibration change the model parameters again get a new 

set of parameters or take the more lender data of ah lend the data set and then you try to 

recalibrate your model and come back and this process continues unless you say you are able 

to say that my model is calibrated as well as validated. Ah So, model validation is a process of 

demonstrating that a given site-specific model is capable of making sufficiently accurate 

simulations and that comes from Refsgaard 1997. 

And when we say sufficiently accurate it varies ah from ah based on project goals. So, of 

course, you need higher accuracy in matters dealing with legal alive-threatening issues. For 

example, if you are trying to model dam break ah where ah if you are wrong in your estimation 

then if by chance something happens to them then obviously, the downstream ah area life will 

be threatened of course, the materials will be threatened and might bring legal issues. So, 

obviously, you have to be very careful in such cases, but otherwise also you would always like 

your model to perform as good as possible. And ah this is the reference of the paper Refsgaard 

J.C. 1997 parameterization calibration validation of distributed hydrological models. It has 

taken been taken from general of hydrology this is a very ah important parameter to understand 

the parameterization calibration validation process of hydrological model. 

 

Now, taking calibration validation together and trying to understand once again, emphasizing 

the difference. So, in both cases, the model is run with input parameters, and model predictions 

are compared with the observed data; that process remains the same. So, what is the difference 

between calibration and validation? The difference is here, that if we talk about the change of 

model parameters, then in calibration, you can do that. 

Yes, you are allowed to change the model parameters during calibration, but if we talk about 

validation, you are not allowed to change the model parameters; that is the major difference. 

During the calibration process, you change the model parameters and keep on changing until 

you are satisfied, until you get a better good match between model simulated and observed 

data. And once you say that my model is calibrated, that means you are satisfied with the model 

parameters; then you are not allowed to change them. Then you go for a validation run and 

there you are not allowed to change the model parameters; that is the significant difference. 

Then, of course, as the input data set is concerned, the data set must be different; that means 



you cannot use the same data set on which you have calibrated the model for validation; you 

have to have a different set of data.  

 

The same data set, fully or partially, should not be used for both calibration and validation; that 

is a big no-no. So, obviously, you have to get a fresh set of data when validating your model. 

So, this is the thin difference: during the calibration process, you are allowed to change the 

model parameters; in validation, you are not and it's advisory that the data set used during 

calibration should not be used during validation; you have to have a fresh data set. 

 

So, that is the major difference between these two. As far as data requirement goes, obviously, 

we need observed data for both calibration as well as validation. A typically longer dataset is 

needed for calibration than for validation. And of course, there are different procedures. If we 

come to recommend test processes, there are three different procedures which are 

recommended. The simplest one is known as split sample test, then we have a differential split 

sample test, and lastly, we have proxy catchment test. We will discuss each of these tests one 

by one, and we will also talk about the length of data required or the type of data required. 



 

Now, coming to the split sample test, as the name itself suggests, the total sample data is split 

into two parts: one period of observation used for model calibration and one or more separate 

periods are used in model validation. 

For example, let us say we have 20 years of data from 1991 to 2010. Then we may use, say, 

1991 to 2005, that is 15 years of data for calibration, and then run validation on 2006 to 2010. 

So, that is one possibility. The other possibility is that we use 1991 to 2002, that is 12 years of 

data for calibration, and then we can use 2002 to 2006 and 2007 to 2010, two different sets of 

data for two different validations. So, that is also a possibility. So, entirely, you know that 

typically, 80-20 is generally recommended—80 percent for calibration and 20 percent for 

validation—but there is no hard and fast rule. Depending upon the length of data, you can 

decide what length is appropriate for calibration and validation, and of course, you can also 

have multiple validations. So, typically, this is a typical picture: if you have 1991 to 2010 data, 

then you might use the first year of data, 1991, 1992, as a warm-up period. This warm-up period 

is basically to give a better initial condition to the model because, as you can understand, if 

your model starts in January, say, in the conditions in January when there is not much moisture, 

or the same model starts in July when there is a lot of rainfall occurring. 

So, of course, the conditions will be very different and then the starting point being different, 

simulation will also be affected. So, that is why typically what we do is that we use one year 

of data for a warm-up period. It is also in modelling what is also known as hot start in some 

literature. You will see the term hot start instead of warm-up period. So, after, and of course, 

this data is not used for the results are not used in analysis. And then after the warm-up period, 

then you run 1993 to 2002 data. You can run for calibration and then you can have two 

independent validations: 2003 to 2006 and 2007 to 2010. And then, of course, you compare in 

calibration also in validation also you compare the model simulated results with the field day 

observed results and then you decide how your model is doing. So, that is a split sample test. 

The next test is a differential split sample test where data is, in the previous case, we saw the 

data was simply divided based on the year. 



 

So, you have 20 years of data; you use 15 years for calibration, 5 years for validation without 

going into the characteristics of the data, but in a differential split state, data is divided 

according to some particular characteristics of the variable, say rainfall rate or some other 

variable in an attempt to show that the model has some general validity. So, you know. It is a 

little bit complicated test compared to split sample test. So, for example, we may say that we 

will run the simulation for monsoon and non-monsoon periods, two different, will simulate for 

monsoon, calibrate for monsoon then validate for non-monsoon or we can say that we will 

calibrate for high flows and validate for low flows in the case of streamflow. So, depending on 

what kind of variable you are using, a specific characteristic of the variable is chosen and based 

on that, data is divided into two different sets. 

So, monsoon versus non-monsoon or high flow versus low flow values are typically then 

modelled and cross-validated. What is done is that we calibrate for high flows and validate for 

low flows, and vice versa. That means you calibrate for low flows and then validate for high 

flows. So, you are checking both ways that you are calibrating for high flows set of parameters 

then validating for low flows, and you are calibrating for low flows and then validating for high 

flows. In both cases, you are comparing the observed and simulated results and then 

establishing the general validity of your model. So, this is a differential split sample test. The 

last one is even more challenging, that is called the proxy catchment test, and here we use data 

for two different catchments to show that the model has even greater general validity. 

Of course, we take two data sets from two different catchments, and it involves calibrating the 

model against data for one catchment and running a validation test for the other catchment. 

Obviously, these two catchments we choose should be in a hydrologically homogeneous 

region, their hydrological characteristics should be the same. They could be neighbouring 

catchments, but obviously, we calibrate for one and validate for the other catchment data. We 

can also do cross-validation where we calibrate for the second catchment and then validate for 

the first catchment and then compare the results. So, that is also a possibility.  



 

The proxy catchment is treated as ungauged at the model estimation stage, but with some 

observations of discharge and perhaps other variables which are available for the evaluation of 

model prediction. Now, this proxy catchment test is really helpful because sometimes we may 

have to use our model for ungauged catchments. 

So, even if you treat the proxy catchment as ungagged, although you have the major data, but 

still, you treat it ungagged and calibrate and validate it. Then, it gives you confidence that if 

you have a catchment which is ungagged where you do not have sufficiently long data, then 

also you calibrate your model for hydrologically homogeneous catchment and then you apply 

the same model into an ungagged catchment in order to stimulate the desired variable. So, that 

is even a greater general validity test of the model. These are three different tests having three 

different characteristics and of course, the split sample test is most commonly used, but other 

tests can also be used. Now, once we have calibrated and validated that means, then of course, 

during the entire process we compare the observed simulation with the simulated value. So, 

obviously, we have to evaluate the model and so, model evaluation techniques come into the 

picture. 

 

Model evaluation techniques can be broadly classified into graphical techniques and 

quantitative statistics. If we talk about graphical techniques, then there are three possibilities: 

we go for time series plots, we can plot scatter plots or we can also have cumulative frequency 



distribution curves. Graphical plots provide a visual comparison of simulated and measured 

constituent data. So, of course, if you plot the observed versus simulation data in the same 

graph, it gives you a clear picture of whether your model is able to simulate the desired pattern 

of the variable or not, whether it is able to match the peaks, low simulations, and medium. 

Suppose flow we are talking then whether it is able to meet that or not, all these things you can 

graphically visualize. So, of course, graphical technique gives us the first overview of model 

performance. 

 

So, looking at the plot, we can really feel whether our model is doing good or bad. So, that 

gives you the first impression about the model. So, when talking about graphical techniques, it 

is said that we plot time series plots of observed and simulated values of fluxes. For example, 

flow or state variables like sediment concentration or whatever. Here, it is the time series plot 

where discharge observed and estimated discharge are plotted on the same curve. Observed is 

represented by dots and the thin pink line represents the estimated value. 

 

As you can see here, in the rising limb of the hydrograph, the model is doing pretty well. Of 

course, the peak is not well simulated; there is some time gap and the simulated peak is coming 

earlier than the observed one. Also, the initial part of the falling limb of the hydrograph is not 

doing pretty well in this portion. So, at the first glance, you get an idea about how your model 

is performing. Then the next type of plot is a scatter plot where we plot the simulated and 



observed variables. Here, groundwater table is plotted, simulated groundwater table versus 

observed groundwater table. Of course, this is plotted against the 45-degree line, the one-to-

one line. Ideally, if your model is performing perfectly, then all data points will be on the 45-

degree line. 

 

So, obviously, that is not feasible in a physical model. So, all your data should be as close as 

possible to the 45-degree line. If you are scattered well on both sides of the 45-degree line, then 

we say, "Okay, my model is doing well." Otherwise, if there are scatters, then you may say, 

"Okay, my model is not doing well," and you will go back and change the model parameters. 

The third thing is, of course, the cumulative frequency distribution. Again, here you compare 

the observed and simulated cumulative frequency distribution of the variable. So, whatever 

variable, it could be flow, it could be any flux also, and then you can compare and really see 

whether your model is doing good or bad at first glance. And of course, after graphical 

techniques, after evaluating through graphical techniques, and once you are satisfied 

graphically, then comes the quantitative statistics, of course and when we talk about 

quantitative statistics, then again, we can have three different types of quantitative statistics. 

 

The standard regression, dimensionless and error index. And within each group, there are a 

number of indices. For example, in standard regression, we have slope and y-intercept, 

Pearson's correlation coefficient, and coefficient of determination. And the important or 



popular dimensionless ones are the index of agreement and natural efficiency which is the most 

popular quantitative statistic and under error index, we have mean absolute error, root mean 

square error, mean square error, percent bias. So, there are many, out of which percent bias and 

root mean square error are pretty common. And of course, you know that coefficient of 

determination is pretty commonly used. 

 

So, of course, there are some very popular ones, but these are the various possibilities as far as 

quantitative statistics go. So, starting with regression, we have standard regression that includes 

slope and y-intercept. So, here it is like fitting a best-fit curve or best-fit line and saying it is a 

straight line if you fit then of which equals to mx plus c, where m provides the slope of the line 

and y is the intercept. And slope indicates the relative relationship between simulated and 

measured value, that is the angle, and y-intercept indicates the presence of a lag or lead or that 

the data sets are not perfectly aligned. So, obviously, for ideal conditions, the slope will be 1, 

that is a 1-to-1 line, and the y-intercept will be 0, which will show the perfect match. 

 

 

So, obviously, your deviation from slope 1 and intercept 0 will tell you how inaccurate you are 

or how your model is doing. So, that is one indication of qualitative statistics. Of course, we 

commonly use Pearson's correlation coefficient which describes the degree of collinearity 



between simulated and observed data. So, obviously, we plot simulated versus observed data 

and then we try to get the best-fit line and then calculate the value of R. And R is an index of 

the degree of linear relationship. R equal to 0 shows no linear relationship, whereas ±1 shows 

a perfect linear relationship, that is for a linear curve but it can also be a power or exponential 

relationship and then, R value, of course, plus minus 1, is always ideal, and R is oversensitive 

to high or extreme values. So, if you have outliers, very high values, then of course, they will 

impact the value of R significantly. Then we have the coefficient of determination, R square, 

which describes the proportion of the variance in the major data explained by the model. It 

ranges between 0 and 1, with a higher value indicating less error variance and typically values 

greater than 0.5 are considered acceptable. And of course, the ideal value is 1; R square value 

is 1, and R square is also oversensitive to high extreme values, which is quite obvious. So, 

obviously, when we say R square of 0.5, that means the value of R is almost 0.7. So, that means, 

a very good explanation of the simulated observed match between simulated and observed 

value. 

 

The coefficient of determination is also a pretty popular one. Coming to dimensionless types, 

as we said, there are two major ones. The first one is the index of agreement D which provides 

a relative model validation and is calculated using this relationship.  

D = 1 − 
∑ (𝑶𝒊−𝑷𝒊)

𝟐𝒏
𝒊=𝟏

∑ (|𝑷𝒊−�̅�|+|𝑶𝒊−�̅�|)
𝟐𝒏

𝒊=𝟏
 

Where: 

 𝑂𝑖 represents the observed values. 

 𝑃𝑖 represents the predicted values. 

 �̅� denotes the mean of the observed values. 

 𝑛 is the number of observations. 

This metric provides a relative measure of model performance, with values closer to 1 

indicating better agreement between observed and predicted data. 

So, from here, 1 minus this will give us the value of D or the index of agreement and it is varied 

between 0 and 1, with 1 being the perfect value. And of course, this is sensitive to extreme 



flows due to the square difference. So, obviously, you can see that because if there is an error 

in the extreme values and because the square term is being used. So, obviously, the value of D 

will be affected. 

 

Relatively high values, more than 0.65 of D, may be obtained even for poor model fits, leaving 

only a narrow range for model calibration. That is the one drawback of the index of agreement 

that even a high value of 0.65 does not indicate a good model fit. So, because of the formulation, 

you get a very high value. 

 

So, unless you get a value greater than 0.7 or more, then only can you say that ok my model is 

satisfactory. So, one has to be really careful about the value of D and then claiming whether 

the model is doing good or bad. And of course, the most commonly used dimensionless model 

evaluation statistic is Nash-Sutley efficiency, which is calculated using this relationship:  

1 − 
∑ (𝑶𝒊−𝑷𝒊)

𝟐𝒏
𝒊=𝟏

𝒏
 

Where: 

 𝑂𝑖represents the observed data at each index 𝑖, 

 𝑃𝑖 represents the predicted data at each index 𝑖, 



 𝑂 is the total observed data, 

 �̅� is the mean of the observed data, 

 𝑛 is the number of observations. 

So, obviously, observed and predicted values you are using for comparison or for calculating 

NSC value. And its value varies from minus infinity to 1, with 1 being the perfect value. 

So, if you get an NSC equal to 0.1 or close to 0.1, that is, close to 1. Sorry, if you get an NSC 

value of 1, close to 1, that is 0.9 or so, then obviously, your model is doing pretty good. Values 

lower than 0, that means negative values, indicate that the observed mean value would have 

been a better predictor than the model. So, if you get an NSC value at minus, then that shows 

that your model is good for nothing. Instead of using the model, if you had used the average 

observed value, probably that would have been a better predictor. So, obviously, you have to 

get a positive value of NSC and it is close to 1, possible. 

 

And of course, this is also sensitive to high flows due to square difference, which you can see 

that if observed predicted values are at high values are different, then obviously, a large square 

is being used so, obviously, NSC value will be affected. And overestimation of the model 

performance during peak flow and underestimation during low flow, that is a typical 

characteristic of NSC. And it is very popular, as I have already mentioned, and it is 

recommended by the American Society of Civil Engineers in 1993. Actually, the American 

Society of Civil Engineers in 1993 formulated a committee to recommend the criteria for 

evaluation of watershed models because even today, if you find a number of papers, people use 

different statistics. So, it was happening that time also in the early '90s also when the modelling 

studies came into work. 



 

So, that is where the ASC formulated committee. So, to so, this committee recommended 3 and 

they said any 2 of the 3 should be used and NSC is one of them. NSC is one of the dimensionless 

statistics that was recommended by this committee for evaluation of watershed models and that 

is why you find that almost every single paper will report NSC value in today's research. Then 

we come to error index and under error index already we listed that is we have mean absolute 

error, root mean square error, mean square error. And of course, this quantifies the deviation in 

the units of data of interest that is an important thing that in this case units of data are used. 

That means, if it is stream flow then obviously, you will be RMC suppose you are using root 

mean square error then of course, you will write that the RMC of flow is so much cubic meter 

per second. 

So, in this case unit comes into picture. So, it gives you an idea about and you know the data 

the how much your flow range is. So, it gives you a numerical idea of how your model is doing 

good or bad. So, that is the significance of this useful because these express error in units with 

0 being the ideal value of all 3. So, whether you use mean absolute error RMC or MSC if your 

RMC value is 0 for flow 0 cusec that means, you are absolutely perfect in simulating the 

observed data, but of course, it is hypothetical. And RMC and mean absolute error are usually 

recommended and RMC and ME value less than half the standard deviation of the major data 

are considered low. 

 



So, obviously, when you take the data, we have already discussed the data analysis, you take 

the data of course, you calculate the mean and standard deviation first. So, obviously, if the 

RMS value, which you are calculating from the model output by comparing the model output 

and the field observed data. So, if the RMS value is less than half of the standard deviation then 

that means, it is an acceptable value. So, this error index has the advantage of using the units. 

Now, coming to the error index, the other two are the P bias which measures the average 

tendency of the simulated data to be larger or smaller than their observed counterparts. 

And this is how it's used: simply percent deviation, basically percent bias, the percent deviation 

we use Oi minus Pi by Oi, and it is expressed in percent, the ideal value of 0. So, obviously, 

the bias should be 0 and then that will be ideal, but it's known that it is not possible for a 

physical model. And positive values indicate model underestimation bias, and negative values 

indicate model overestimation bias because if you get a positive value that means, the observed 

data are higher than the predicted one so that means, the model is underestimating. And if you 

get a negative value then it is just vice versa, then your predicted values are more than the 

observed value, that means, your model is overpredicting. And similar to P bias, there's another 

one which is deviation in flow volume, which is calculated in a fashion similar to P bias which 

is also recommended by ASC. 

So, I've already mentioned two out of the three recommendations by the ASC. They 

recommended a deviation of flow volume, NSC and two others. This DV, calculated as P bias 

is more commonly used. However, the calculations, procedures, and meanings remain the 

same, making it a widely used method. Now, we've observed numerous model evolution values, 

both graphical and quantitative. We have dimensionless values error indices and graphical 

techniques. Essentially, we recommend utilizing at least one of these three: dimensionless, error 

index, and graphical techniques. 

Consequently, time series plots can display natural wave efficiency graphically, dimensionless 

values, and error indices like RMC and percent bias. These are common statistical choices. 

Additional information such as the standard deviation of major data may also be included to 

reflect the model's performance. During calibration and validation, it's expected to provide a 

graphical plot, like a time series plot, and use an error index, such as percent bias or RMC along 

with dimensionless statistics like natural efficiency. These must be adopted and reported when 

presenting results. 

 



Moving on to the calibration process, there are two main methods: manual calibration and 

automatic calibration. 

So, both of these calibrations are possible, and in the manual calibration model, parameters are 

adjusted by the modeler, and it is a trial-and-error process. It is time-consuming and difficult 

to determine the best fit or to determine a clear point indicating the end of the calibration 

process. Basically, because if you change any one of the model parameters, then obviously, 

your results will change, and you may be doing slightly better than the previous one. So, you 

will be tempted to go for energy change and so on. It is a very time-consuming process because 

the modeler is changing parameters one by one. So, if a model has a large number of 

parameters, of course, it will take a long time to calibrate the model manually. 

Another problem is that different modelers may obtain different results. So, if n number of 

models are trying to calibrate the same model with the same data set, everyone might come up 

with a different combination, and this is a problem referred to as equifinality. That is multiple 

parameter sets providing equally good or acceptable model outputs, which is a problem with 

manual calibration. It is one of the main sources of uncertainty in hydrological modelling 

because different combinations of parameters can give you a good result at another set of 

different combinations. So, that means there is always uncertainty in your model results; there 

is no conformity, there is no best, something like it is the best parameter set. I mean that is the 

problem. On the other hand, we have automatic calibration where the purpose is to find those 

values of the model parameters that optimize, that is minimize or maximize the numerical value 

of a particular objective function which we use. 

So, automatic calibration involves three different process elements. First, you must have an 

objective function. We may use NSC (Normalized Scalar Coefficient), and naturally, we aim 

to maximize NSC. Alternatively, we can opt for a multi-objective function. 

Next, you need two optimization algorithms. Two popular choices are the Shuffled Complex 

Evolution Algorithm (SCEUA), developed at the University of Arizona, hence its name, and 

Parameter Estimation by Sequential Testing (PEST), the publication reference for which is 

available. These algorithms, SCEUA and PEST, are commonly used. 

Additionally, termination criteria are necessary. This could involve setting a maximum number 

of iterations, such as 500 or 1000 runs, and accepting the resultant values. Alternatively, 

convergence of the objective function can serve as a termination criterion. For instance, if the 

NSC value decreases by less than 1% between iterations, the process can be terminated. The 

same principle applies to parameter convergence—if there is no change in parameter values 

after a 1% adjustment, the process can be deemed satisfactory. 

So, of course, while automatically calibrating, one has to have these three process elements: an 

objective function an objective optimization algorithm you have to use and of course, you have 

to set termination criteria. So, with this, we come to the end of this lecture. We have talked 

about the calibration validation and evaluation and also the calibration process like manual or 

automatic calibration. Thank you very much. Please give your feedback and also raise your 

doubts or questions which we will be happy to answer.  



 

Thank you very much. 


