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Covariogram and Correlogram

All right. So, welcome back to this short part of lecture 12, where we are going to cover these

spatial dependence devices called the Covariogram and the Correlogram.

So, let us dive in you know in all likelihood it will be a short lecture. So, consider the relation

that the variance of Z of S1 minus Z of S2 is equal to the variance of ZS1 plus the variance (I

am simply applying the definition of variance here), of ZS2 minus twice the covariance of ZS1

comma ZS2.

And remember you know these will be sort of true for all S1 and S2 in a stationary domain

right? Now variance of ZS1 minus ZS2 is obviously, the variogram right. It is 2 gamma L2

norm of S1 minus S2 right of course, you know we are talking about data that are delineated

with a coordinate system where you know as we saw earlier S1 is an x y coordinate and S2

which is S1 plus h is sort of also has its own x y coordinate and we can visualize these as

vectors themselves right.

So, S1 and S2 are vectors and the lag between them is the vector h, which we say S1 minus

S2. So, S h encapsulates both distance and direction right. So, we say that you know h the

distance is equal to the L2 norm of S1 minus S2. Now given S1 S2 and h as defined above Z has

to be a second-order stationary process for the covariance you know covariance measure C of

S1 minus S2 that is covariance Z of S1 Z of S2 to be defined.

Now, you know this C of you know the distance between S1 and S2 can also be written as C

of h simply right? it is just C of h right?, and now I can write variance of Z of S1 minus Z of

S2 is equal to C0. So, the variance of Z of S1 is just the covariance of Z of S1 with itself right

plus C 0 minus 2 C h which can be written as twice C 0 minus C h right that is a convenient

interpretation. Now, this variance of ZS1 minus ZS2 is equal to twice gamma h right?, where h

is nothing but the distance metric of the lag vector between S1 and S2.

So, 2 gamma h is equal to 2 C 0 minus C h, which implies that gamma h is equal to C 0

minus C h right? quite clearly. So, Note 1, gamma, and C are inversely related, and this



discussion cannot be clearer than that right? And Note 2 the fact that I have defined 2 gamma

h means I am assuming that Z is an intrinsically stationary process. Remember to be able to

define a variogram, I need the definition of intrinsic stationarity, right? The variogram is

embedded in the definition of intrinsic stationarity.

So, I am just going to say that the fact that I have defined 2 gamma h means I have assumed

or claimed or committed to intrinsic stationarity, which again remembers is a decision that

you must take before, you go on to provide such a definition. Now Note 3, C of h this C of h

is called the covariogram. So, we have solved one puzzle we know what is covariogram.

Next, we will simply figure out what is correlogram right ok let us do that.

So, given C 0 greater than 0, we have rho, which is the notation for the correlogram for points

separated by a lag of h. This is my correlogram is equal to C of h divided by C of 0, this is the

definition of a correlogram. Now pay attention that the correlogram is an analog or analogous

to the correlation parameter right?

So, if I were to do a little aside here and we want to talk about the correlation between x and

y, those who have most of you would have seen this earlier is nothing but the covariance of x

and y divided by the standard deviation of x and standard deviation of y right. We are simply

writing an analog, we are defining an analog of the correlation statistic as we understand it. In

fact, even define this as a row parameter using a row parameter.

So, we are simply sort of you know we are creating this analog of the correlation parameter. I

am just going to fix my handwriting here sorry about this trouble. Yes, that is it alright; so,

now sort of the properties portion. So, let us look at that. So, we have, if I am going to say

furthermore if C of h approaches 0 as h approaches infinity.

So, we are looking at points that are very far apart or enough far apart in space right? then we

say that 2 gamma h we will have 2 gamma h will approach 2 of C 0 right, which is nothing

but you know basically the variance of ZS1 and variance of ZS2, the variance of ZSi right? As

obviously h approaches infinity.

Now, the quantity C 0 is called the SILL of the variogram. Notice that the SILL of the

variogram measures large-scale variation in data right? It is a point when 2 gamma h has

become a constant right? Remember when we looked at the properties of the variogram we

said if you know 2 gamma h or the variogram becomes a constant k; that means, there is no



spatial order correlation, spatial correlation, there is no spatial contiguity in data thus the data

becomes spatially random.

Now, what this property with the covariogram tells me is that as we move far apart enough

right? You are going to have a situation, where the data will be not related to each other, they

will be random with respect to each other. So, spatial dependence by itself will sort of fall

down, as we go as we increase h eventually sort of you know diminishing to 0. At this point

the variogram measure will become a constant and that constant will be nothing but C 0,

which is nothing but the large-scale variation in the data, the overall variation in the data.

Now you know a couple of more definitions that C of 0 minus C 0. Now this C 0 is the

nugget effect and the big C 0, the capital C 0 is SILL. This is defined as the partial SILL. I

am only defining these if you sort of come across these measures later and very importantly,

so another very very important you know discussion is that the smallest value of a measure R.

Now R is you know in on the real space. So, it is a one-dimensional measure just like h. So, it

only encapsulates distance, not direction.

So, R which so the smallest R-value, for which 2 gamma R is a constant that is 2 C 0 right?

then R is called or known as the range of the variogram or the semi-variogram. So, the range

is the distance from any point in time where spatial dependence diminishes to 0 ok.

Spatial dependence is not a global process it is a local process. We have said that when we

introduce spatial statistics we said there is spatial heterogeneity, which is large-scale trends in

space and then there is spatial dependence, which is defined to be a local property right?

So, if we move far apart enough right? We are going to have a situation where these values

are as if randomly generated from you know independently and randomly independently

generated from each other. They are not going to be spatially dependent.

So, after we have moved out R units of distance from any given point the prediction power of

this knowledge of the information of this original point beyond this R distance in all

directions is 0, there is no value to this in terms of spatial prediction ok. This is pretty

interesting, right? So, having understood that now what we have seen is that we have two

alternative measures of spatial correlation right?



We have two alternative measures of spatial contiguity, right? We have the variogram we

have the covariogram. We also have the correlogram, but the correlogram is really just you

know a derivative of the covariogram. It turns out that the variogram is most favored among

the two and the question is why? So, let us try and sort of you know understand what is

gained by postulating a variogram rather than a covariogram.

So, typically you will see studies estimating or reporting variogram measures rather than

covariogram measures whereas, we have seen on the previous slide, we saw that they are

simply inversely related, they are linearly related in fact. But still, you know studies almost

always will report a variogram rather than a covariogram and the question is why? The first

reason is that the class of second-order stationary processes is almost completely contained in

intrinsic stationary processes.

We know that for defining variograms we need intrinsic stationarity, but for defining

covariograms we require second-order stationarity. Second-order stationery is a weaker

concept of stationary it is completely contained in the intrinsic stationarity. So, that means,

that the variogram is a more general device of spatial contiguity.

So, let us say that. The class of second-order stationarity is a process strictly contained within

the class of intrinsically stationary processes. And that will basically imply that the variogram

may be defined for more general settings than the covariogram is defined.

So, the variogram is defined for more general settings than the covariogram, an example of

this is if you had to model Brownian motion in space. So, Brownian motion is nothing but

again a collection of random variables in space basically forming a random function right?

So, you have s in a domain D which is part of let us say a general D dimensional real space,

then the variance of wS1 minus wS2 will be equal to just h, where obviously, h is nothing but

S1 minus S2.

Now, this is a typical formulation of the variogram, now variogram is a function of the

distance between two locations right? So, we are fine. So, instead of so now, gamma h is

simply h right or h o basically 2 gamma h is simply h. So, gamma h is h over 2, right;

whereas, the covariance of wS1 and wS2 is random variables at different locations S1 and S2. If

you calculate it for the Brownian motion it will turn out to be half of S1 plus S2 minus S1

minus S2, for every S1 S2 in the domain D.



Now, S1 minus S2 is equal to h, but what we see here is that the covariogram also depends on

location and not just distance. So, a covariogram is not defined in the sense of second-order

stationarity. Second-order stationarity requires that the covariogram be defined by the

distance between two locations and not the location itself. Here if I move on to locations S3

and S4 which are let us say apart by the same distance h, the covariogram will not be able to

be the same as it is between wS1 and wS2 right?

So, the covariogram is not defined right. So, this implies the covariogram is not defined for a

Brownian spatial process right? whereas, the variogram is because it is following the rule that

you know the variogram the variance of the first difference of values that are generated at two

different locations has to be a function of the distance and not the locations themselves.

It is not a function of S1 and S2, but S1 minus S2. The second major reason is something that

we have not come to yet. So, we will just touch upon it and move forward that spatial

prediction is considered easy to sort of carry out on intrinsically stationary domains, and

intrinsic stationarity is strictly containing you know the idea of second-order stationarity.

So, that is why the variogram is more general we have seen an example. So, for prediction

purposes, you know variogram is always going to be preferred over the covariogram that is

why you know in most cases you know, you the papers that you will read, the applications

that you will come across the applications that we will do in this class.

We will be working with the variograms and almost never working with the covariograms.

We studied them for pedagogical reasons because we are going through the theory of spatial

you know the estimation of spatial processes you know characterizing spatial processes are

characterizing the spatial process. So, both variogram and covariogram provide a valid

characterization of the spatial processes. The only trouble is that the covariogram is less

general. So, they are not valid for cases or for situations, where the variogram maybe you

know could be studied.

So, what we are going to do next is the next sort of agenda in this course is going to be

working with what is called the experimental variograms. So, we are going to focus on the

variogram of course, we have talked about it and we are going to sort of you know to focus

on calculating or deriving this variogram using the real-world data set right? So, that is the

agenda going forward, I hope you enjoyed today’s lecture and I look forward to having you

again in the next lecture.



Thank you very much for your attention.


