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Welcome back. So, in the previous part of the 16th lecture, we established that beta 1 will

represent a causal impact of the number of rooms on the price that is realized in the market

for a particular home, that is the causal impact of Ri on Pi is given by beta 1; if we have a

crucial assumption A2 satisfied which means expectation ui given Ri is 0. This means that

whatever the value of Ri, be it Ri equals 1 that is it is a 1-room home, it is 2 rooms home, it is

3 rooms home, 4 rooms and so on and so forth.

The expectation of ui will remain the same if I were to change the level of Ri right? And in

fact, the expectation of ui will not only remain constant, but it will also be equal to 0, that is

the scope of assumption 2. Now, this implies that when Ri changes to Ri plus 1, all else is held

constant.

Everything observable and unobserved in ui is all health held constant, that is why beta 1 in

the regression model equals del i by del Ri; this partial differential notation implicitly

assumes that all else was held constant.



Now, if this was a deterministic equation, if we only worked with yi equals beta 0 plus beta 1

Ri, this mathematical formulation that del Pi by del Ri will automatically suggest that all else

is held constant right? Now, what does it mean to say that all else is held constant? This

means, that if I change Ri to Ri plus 1, then the factor sitting in front of beta 0 remains 1. So,

whatever change I see in yi is going to come from the change in Ri right?

And, this can be true even if I had let us say beta 2 x 2i, right? I had another covariant x 2 i.

The formulation that beta 1 equals del yi or del Pi over del Ri will implicitly automatically

hold xi value to its original xi. It does not let it move from there, that is what beta 1 measures

in a deterministic equation.

The trouble is that in regression we have this random term, this random draw coming out

apart from all the deterministic variables. And, the only way to be able to hold the ui value

constant when we change Ri from Ri to Ri plus 1 is this assumption A2, right?

That is why it is perhaps the most crucial assumption of a regression equation because it

ensures the causal impact of Ri on yi, yi being represented as Pi here right? Now, for example,

ui comprises an index for public amenities, public amenities in the neighborhood of house i

right? Now, I am going to sort of use a mathematical notation for these public amenities as Ai

such that the correlation of Ri and Ai is non-zero. I am going to go one step forward and, I am

going to say Ri and Ai are positively correlated.

That is to say that, if you have better amenities in a neighborhood, you are likely to find

larger homes in that area, which is kind of a posh community understanding in the Indian

society or any real estate market. Typically, if you have lots of public parks surrounding, very

good sanitation, infrastructure, and good roads, the crime rates are under control, and there

are a lot of security arrangements. Those are the communities that typically have larger

homes and not 1 bedroom condos right?

And in areas which are dense and have fewer public amenities, people live in less secure

conditions, the quality of roads is poor, you find smaller 1 bedroom apartments in a city like

New Delhi or in general in India right? So, smaller homes or a smaller number of rooms, if

that is the index for space will be found in areas where the index for amenities is lower right?

Now, with that understanding, you can say that this will imply that the correlation of Ri and ui
is also by extension equal to 0 because Ai is in ui. It is not controlled explicitly, we do not



have a measure of it. Just because we do not measure Ai does not mean it does not affect Pi. It

affects it because, I cannot measure it and I cannot control for it in my regression equation, as

an analyst it sits in the error term ui.

Now, that I have talked about the interpretation of Ai, it says that if you have a higher degree,

better degree, and better public amenities, you are likely to have a more spacious room, you

know more spacious homes or apartments. And, that would sort of provide you know an

understanding that there are bigger apartments and more rooms right?
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Then, if delta Ri implies is not equal to 0 implies delta Ai is not equal to 0, we cannot

simulate, what is called a ceteris paribus experiment, wherein upon changing Ri to Ri plus 1,

we could hold all else constant. So, a ceteris paribus experiment is one, where if I change a

covariate xi or in this case Ri, I can hold everything else constant right?

If I am not able to hold everything constant and something moves in the error term; that

means, the expectation if ui was given Ri is non-zero, then that would imply that the impact

that I see on Pi upon this marginal change in Ri is not causal, but merely an association

between Pi and Ri ok. So, we have seen this formulation that if I have a change Pi tilde minus

Pi, you know is attributable solely to Ri changing to you know Ri plus 1, that is delta Ri equals

1.



You know only if the correlation of Ri and Ai were 0, this implies a correlation of Ri and ui is

0 and this implies an expectation of ui given Ri is 0. These things will go both ways. So, the

implication is it's double implied. Now, this is also the difference between correlation, or

what we say association, and what is called causation. So, when we talk about spatial

regression analysis, we would then interpret these items in terms of spatial dependence.

So, if spatial dependence interferes with expectation ui given xi that is when we have a

problem in terms of establishing causality in a spatial regression model. If spatial dependence

sort of is the one which is correlated with one of the xi's, then we are in trouble, right? If

prices were correlated in a community, let us say they are spatially correlated in the sense that

higher-priced homes are clustered together and we do not control for it, right?

Then, you know that will also be an index for higher room-sized or higher more spacious

homes clustered together. And, if we do not control for such a phenomenon, then that

phenomenon is sitting in my ui term and that will start to interfere with my causal inference.

And, this is something we will study in a more conceptual setting you know going forward.

Moreover, the data-driven estimate of beta 1 that is beta 1 hat is unbiased only if you know

the expectation of ui given xi is 0 right?

So, the regression estimator that is the data-driven estimate of beta 1 hat is also unbiased, that

is it is a good representation of the true model beta 1; only if you have an expectation ui given

xi equals 0. Why is that? Because look the definition of beta 1 arises from the fact that Pi or

you know is sitting on the left-hand side and Ri is sitting on the right-hand side. So, beta 1 by

definition measures a unidirectional relationship which goes for it starts at Ri and ends at Pi.

If the expectation ui given xi fails; that means, the causality is not in the direction of Ri to Pi

rather it is merely an association that can come from Pi to Ri as well. So, it is a circular loop, a

loop where we cannot identify which direction the impact is, that is by definition merely

correlation or causation, right? So, if the expectation ui given xi fails, then that is we cannot

simulate a ceteris paribus experiment, that is we cannot establish causality. We are merely

dealing with the correlation estimate.

Then, we might as well not go through this pain of conducting regression analysis and may

just rely on a correlation you know statistical correlation between Pi and Ri, which is

sufficient. We do not need a regression right? So, everywhere and anywhere, you see a

regression analysis is done going forward. You should critically analyze whether or not this is



a correlation or association or it is indeed a causation impact, causal impact. In social

sciences, causal impacts are really important.

It is kind of important because you see there is you know if you think about even the real

estate market if developers or builders are building spacious homes; should they be investing

in larger space homes?

You can get 1 unit for a very large space versus 4 units in that equal space which is a good

deal by the policy of a real estate business right? If the premium of having a larger house

does not translate into better pricing then perhaps we should not find larger homes in the

market, but that is not the case, right?

So, this beta 1 is not merely a mathematical unit, it has a real-world interpretation and

real-world implications, on which you know a lot of investment is riding right? Similarly, if

you have programs like the Skill India program, did it create more jobs right? If you do not

conduct a causal analysis, then your investment might not produce, and it might go to waste.

If you provide higher MSPs for crops, does that translate into better welfare for farmers? You

need a causal inference, correlations are not enough. And, that is where social scientists and

more particularly economists are focused in terms of evidence-based policy.

𝐴3:           𝑉(𝑢
𝑖
|𝑥

𝑖
) = σ2 𝑖. 𝑒 𝑖𝑡 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑑𝑒𝑝𝑒𝑛𝑑 𝑜𝑛 𝑖,  𝑏𝑢𝑡 𝑎 𝑐𝑜𝑛𝑠𝑡( )

⋏ 𝐶𝑜𝑣(𝑢
𝑖
,  𝑢

𝑗
| 𝑥

𝑖
) = 0 ∀ 𝑖≠𝑗

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 − 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑜𝑟 𝑢
𝑖
𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑎𝑠 𝑉 𝑢

𝑛𝑥1( ) = 𝑉(𝑢
1
) 𝐶𝑜𝑟(𝑢

1
,  𝑢

2
) ···  𝐶𝑜𝑟(𝑢

𝑛
,  𝑢

𝑛
)  𝐶𝑜𝑟([

=   σ2      σ2          ⋱    σ2   [ ]
⇒𝐸 𝑢

𝑖
2| 𝑥

𝑖( ) = σ2 ∀ 𝑖

𝑎𝑛𝑑 𝐶𝑜𝑣(𝑢
𝑖
,  𝑢

𝑗
| 𝑥

𝑖
,  𝑥

𝑗
) = 0 ∀ 𝑖≠𝑗

𝐼
𝑛
 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑜𝑟𝑚:         𝐸 𝑢 𝑢'( ) = σ2𝐼

𝑛
 

= 𝐸 𝑢
1
 𝑢

2
 ⋮  𝑢

𝑛
  [ ]

𝑛𝑥1
𝑢

1
 𝑢

2
 ···  𝑢

𝑛
  [ ]

1𝑥𝑛

= 𝐸 𝑢
1
2 𝑢

1
𝑢

2
 ...  𝑢

1
𝑢

𝑛
  𝑢

2
𝑢

1
 𝑢

2
2 ...  𝑢

2
𝑢

𝑛
  ⋮  𝑢

𝑛
 𝑢

1
  ⋮  𝑢

𝑛
𝑢

2
  ⋱ ...   ⋮  𝑢

𝑛
2   ⎡⎢⎣

⎤⎥⎦ = 𝐸𝑢
1
2 𝐸𝑢

1
 𝑢

2
 ...  𝐸𝑢

1
𝑢

𝑛
  𝐸𝑢

2
𝑢⎡⎢⎣



⇒𝐸 𝑢
𝑖
2| 𝑥

𝑖( ) = σ2 ∀ 𝑖

𝐸(𝑢
𝑖
,  𝑢

𝑗
| 𝑥

𝑖
,  𝑥

𝑗
) = 0 ∀ 𝑖≠𝑗

So, moving the discussion forward, we have looked at two assumptions till now. We will now

quickly look at a few more assumptions of the regression model and end this lecture. The 3rd

assumption is that the variance, the variance of ui given xi is sigma squared right? That is it

does not depend on i, it is a constant. But, a constant which is the same for all i's.

Moreover, it says the covariance of ui and uj given xi is 0 for all i not equal to j, that is the

variance-covariance matrix for ui is given as variance of u, where u is a n by 1 collection of

all the error terms from 1 to n. This is going to be n by n matrix right? We have seen that the

variance-covariance matrix is of is a square matrix of size n by n, if it is a

variance-covariance matrix of an n by 1 vector; where the diagonal terms are just the variance

terms and the off-diagonal elements are covariance terms and also it is symmetric.

So, you know if you have covariance u1 u2, you will have a symmetric term covariance u2 u1,

where it is exactly equal. It does not matter which order you are calculating the covariance at.

So, un u1, covariance un u2 and keep going like this.

So, we have this variance-covariance matrix, and assumption 3 says, that this matrix looks

like the following. So, all off-diagonal elements are 0, and diagonal elements are the same,

that is sigma squared which can be simply written as sigma squared In right? So, the

variance-covariance matrix is written as sigma squared In.

This could also translate into this implies that the expectation of ui squared, this is the second

moment of ui is sigma squared for all i right? This can then also be written as so, and the

covariance again ui uj given xi xj is 0 for all i not equal to j. In matrix form, we have to always

learn to translate between matrix and scalar forms, because they are very useful in terms of

reading papers and textbooks right; most textbooks are written in vector form.

So, this module, this recap is not only giving you a recap of the regression model. But, also I

hope it is giving you this translation between the scalar form and the vector form. So, in the

matrix form these two conditions can be then compressed into an expectation uu prime equals

sigma squared In. What does that mean? Let us look at the LHS. So, we have an n by 1 and a

1 by n. So, I have an n by n which is what I should be looking at.



So, I have an expectation operator sitting here, I have u1 u2 to un, and it transposes u1 u2 to un

as a row vector. This is when we multiply as n by 1 and 1 by n they are conformable. If we

multiply, we get an expectation of u1 squared u1 u2 to u1 un, then u2 u1 u2 squared, all the way

to u2 un. Then, you have un u1 and keep going un u2, all the way to unsquared. So, all the

diagonal elements are squared values. So, the expectation operator is a linear operator that

simply goes in and applies itself directly to each term here.

So, this is going to be expectation u1 squared expectation u1 u2 keep going expectation u1 un

expectation u2 u1 expectation u2 squared, keep going expectation u2 un. Similarly, all the way

to expectation un u1 expectation un u2, and tail until expectation unsquared. Now, this matrix

in front of you that is the expectation uu prime is nothing, but the variance-covariance matrix,

right? Because, if you look at it carefully expectation ui squared is nothing, but the variance

of u1 given that expectation u1 ui is 0.

Expectation u1 u2 corresponds to the covariance between u1 and u2 and similarly, expectation

u2 u1 is corresponding to this. This will imply that expectation ui squares directly correspond

to this you know factor sigma squared and expectation u1 u2 are all going to be 0s right; that

means that this matrix is nothing, but you know sigma squared and 0s everywhere else. This

will imply that expectation ui squared, given xi is 0 for all i, and expectation ui uj given xi xj
will be 0, sorry above one is sigma squared for all i not equal to j.

These two combined are also sometimes you know we say errors are spherical. So, the 3rd

assumption that we take is the assumption that the variance of each ui term is a constant and

equal across all ui's and the errors are not correlated. So, home 1 and home 2 whatever we

have not observed is not correlated by itself. This is the 3rd assumption. Let us move on to

assumption 4.
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𝑊𝑜𝑜𝑙𝑟𝑖𝑑𝑔𝑒'𝑠 𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑 𝐸𝑐𝑜𝑛𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

𝐴5:      𝑋
𝑛𝑥𝑘

 𝑖𝑠 𝑎 𝑛𝑜𝑛 − 𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥.

𝐴6:         𝑢 𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑖. 𝑒.,        𝑢
𝑖
 ~𝑖𝑖𝑑  𝑁 ?,?( )   ∀ 𝑖

𝐴1,  𝐴2,  𝐴3 𝑎𝑛𝑑 𝐴6⇒𝑢
𝑖
 ~𝑖𝑖𝑑     𝑁 0, σ2( ) ∀ 𝑖

Assumption 4 means the rank of the covariate matrix X which is let us say an n by k matrix is

equal to k. What is this X n by k matrix? Well, you can think of this as the X fact vectors

arranged in columns. So, my regression equation is yi equals beta 0 plus beta 1 xi beta 2 x 2i,

all the way to beta kx ki plus ui. Now, i goes from 1 to n; that means, that all these you know

xi's are arranged in columns. So, the first column is just a column of 1s.

How many of these are? There n of these are, there are n rows of 1s as the first covariant. The

second is x11 x12 all the way to x1n and this is the first covariate. So, in the case of my price

and you know the portal for house prices the real estate market x11 is the number of rooms in

home 1 or house 1 x 1 2 is the number of rooms in house 2, we have data for it.

Say we have more data, let us say the size of the kitchen I do not know right? That might be

the second covariate x211 x222 x22 and x2n. Similarly, we have xk1, the kth covariate, the kth

covariate would be the crime rate near that house in the neighborhood of that house; xk1 xk2
till xkn. These are all, this is the entire data that is included on the right-hand side of the

model.

When we say that this is this has the rank X, what we are saying is that you know all columns

of X n by k are linearly independent, that is to say, that you know because I do not have

superficial data. If I have let us say the number of rooms and the number of bathrooms, let us

say there is always an attached bath to a room. Then, you know including the number of

rooms and the number of bathrooms is separate covariates is sort of is redundancy.

So, the point of this assumption is there is no redundancy in the data. The second thing it says

is that you know ultimately it means the rank of this matrix X is equal to k implies that n is



greater than or equal to k, that is to say, that we have at least as much data as we have

variables. Remember, to each k to each k is attached a coefficient beta. So, that is what we are

saying that you know to each variable there is at least one data point that corresponds to more

than that, that makes sense right?

We cannot have 10 data points and 10 covariates, that is going to be a very difficult situation.

Now, this relates to also to what is called a dummy variable trap. I am going to leave you

with this interesting term dummy variable trap and I am going to give you a home assignment

to study this from the book on econometric analysis by Wooldridge right? You can say

Wooldridge’s Advanced Econometric Analysis.

You must read the first two chapters and if you read them, you will figure out what is dummy

variable trap. You should find this term and study it from the book. This will also give you a

very nice review of this what we have covered in this you know in this class till now.

Quickly, the 5th assumption of a regression model is that X, this matrix X contains factors that

are you know non-stochastic, that is to say, when we say that the number of rooms is 3, we do

not mean 3 with some error, we say it is 3 right? It is a degenerate matrix.

Assumption 6 is that the error term is normally distributed, that is to say, that ui is normal

with a mean and a variance for all i and these are all iid. If we look at our assumptions;

assumption 1, assumption 2, assumption 3, and assumption 6 will imply that ui is iid normal

0 comma sigma squared for all i. This is a crucial assumption.

𝐿𝑒𝑎𝑠𝑡 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟

𝑦
𝑖

= β
0

+ β
1
𝑥

1
𝑖

+ β
2
𝑥

2
𝑖

+ 𝑢
𝑖
  ;    𝑖 = 1, 2…., 𝑛 

𝑁𝑒𝑒𝑑 𝑡𝑜 𝑓𝑖𝑛𝑑:      β
^

0
,  β

^

1
,  β

^

2
𝑤𝑖𝑡ℎ 𝑛 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 

𝑜𝑓 𝑎𝑏𝑜𝑣𝑒 𝑡𝑟𝑢𝑒 𝑚𝑜𝑑𝑒𝑙.

𝑚𝑖𝑛 β
0
,  β

1
,  β

2
      

𝑖=1

𝑛

∑ 𝑦
𝑖

− β
0

− β
1
𝑥

1
𝑖

− β
2
𝑥

2
𝑖

( )2

𝑦𝑖𝑒𝑙𝑑𝑠:        β
^

0,𝐿𝑆
 ;  β

^

1,𝐿𝑆
 ;  β

^

2,𝐿𝑆

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 𝑚𝑜𝑑𝑒𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛:  𝑦
^

𝑖
= β

^

0
+ β

^

1
𝑥

1
𝑖

+ β
^

2
𝑥

2
𝑖

 



𝑀𝑜𝑑𝑒𝑙 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑡𝑒𝑟𝑚:     𝑦
𝑖

−  𝑦
^

𝑖
= 𝑢

^

𝑖

𝐺𝑖𝑣𝑒𝑛 𝐴
1

− 𝐴
6

β
^

1,𝐿𝑆
 𝑖𝑠 𝐵 𝐿 𝑈 𝐸

β
^

0,𝐿𝑆
 𝑖𝑠 𝐵 𝐿 𝑈 𝐸

β
^

2,𝐿𝑆
 𝑖𝑠 𝐵 𝐿 𝑈 𝐸

∵𝐺𝑎𝑢𝑠𝑠 𝑀𝑜𝑟𝑘𝑜𝑣 𝑇ℎ𝑒𝑜𝑟𝑒𝑚

𝐵 𝐿 𝑈 𝐸 𝑚𝑒𝑎𝑛𝑠,   𝐵𝑒𝑠𝑡 𝐿𝑖𝑛𝑒𝑎𝑟 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠

𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝑚𝑒𝑎𝑛𝑠,  𝐸 β
^

𝑘,𝐿𝑆( ) = β
𝑘

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑤𝑖𝑙𝑙 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑟𝑒 𝑤𝑖𝑡ℎ 𝐴2 ; 𝐴3

Now, finally, I want to just in this recap, I want to talk about what is called the least squares

estimator. I have been saying that ultimately, we want to be able to estimate this beta 0s and

beta1 and so on and so forth. So, I have a model, a true representation of the truth given as

the following. Let us say I have this representation of the truth, that I want to explain y i

based on a model equals beta 0 plus beta 1 x1i plus beta 2 x2i till ui.

Now, I have data on these things right? I have data on 1 2, all the way till n. I have n values

and I want to figure out what is the database representation, right? So, we need to find or

estimate beta 0 hat beta 1 hat, and beta 2 hat with n data points for both y for y x1 and x2.

We have n data points and the knowledge of the above true model, right? So, the true model

is giving me what parameters to be estimated. And it is also giving me the specification, that

both x1 and x2 are entering as linear regressors. And, you know there is a constant of 1s and

there are three parameters.

The model parameters, and coefficient parameters that is beta 0, beta 1, and beta 2 are to be

estimated. So, least squares estimator, the algorithm is to minimize what is called the sum of

squared errors. So, we take the errors at every time, every instance of my data observation.

We calculate the error and minimize it, that is we want to minimize yi minus beta 0 minus

beta 1 x1i minus beta 2 x2i the whole squared. So, I am conducting this minimization exercise

while I choose beta 0 beta 1, and beta 2.



It is an optimization problem. I will write my first-order conditions, but ultimately this

exercise will yield beta 0 hat least squares, beta 1 hat least squares, and beta 2 hat least

squares right? The model representation, the prediction, or the predicted value from model

estimation is given as yi hat which is nothing, but beta 0 hat plus beta 1 hat x1i plus a2 hat x2i.

So, if I were to visualize this on a scatter plot, you know I have my x1i and yi of course, there

is also x2i which can be viewed in the third dimension. But, I am restricting myself to the

cross-sectional representation, scatter plot representation of yi's and x1i's. Let us say I have my

stylized scatter plot, which I have been working with till now. And, I am able to estimate a

regression where this represents beta 0 hat and the slope of this line is beta 1 hat.

Now, to every value of xi, x1i rather you know I have a true value and a predicted value, and

another true value. So, here is the prediction which is yi hat which is given as beta 0 hat plus

beta 1 hat plus beta 2 hat x2i. And, the truth is yi, there are two truth values here yi1 and yi2 let

us say. Then, you know the model residual term, that is what this model could not explain the

distance between the truth and the predicted value that is yi minus yi hat is nothing but the

value ui hat right?

Now, you can represent ui hat values in this fashion. To each xiwe can have more than one ui
hat. In fact, we have typically more than one ui hat value, if we have a dense enough data set.

Now, given very very crucially this is the point where I am going to end this review of the

regression analysis.

But, I am going to then articulate the departure from the typical traditional regression analysis

to spatial regression analysis from this point that I am going to make next. That is given the

assumptions A1 to A6, right? The 6 assumptions that we articulated today, we can say that

beta 1 hat least squares is BLUE right?

Equivalently, we will also say beta 0 hat least squares is BLUE and beta 2 hat least squares is

also BLUE. This idea of BLUE estimator, you should study from what is called the

Gauss-Markov theorem. Again, articulated very well in Wooldridge’s book. Otherwise, also

Gauss-Markov theorem is so, popular that you can you know we do not have time in this

course to go over it. But, any introductory econometrics course introduces the Gauss-Markov

theorem.



So, by Gauss-Markov theorem given assumptions A1 to A6, the beta hats that are arrived

from the least squares algorithm are BLUE. What does BLUE mean? Well, BLUE means that

they are the Best Linear Unbiased Estimators. They are the best guess of the truth and when it

means, what it means by best, we will look at as we sort of you know walk through different

parts of this course. What unbiased means that the expectation of beta k hat least squares is

exactly equal to the true beta k [FL].

So, you have beta hat least squares is exactly equal to beta k which is the truth. Remember,

we are looking at the truth as well as we are looking at its estimate. The estimate is a function

of data. Truth is just the model representation of the real world, where yi can be linked with x1
and x2 right? Once, we are given the data, we are practically somehow getting a

representation of beta 1 and beta 2, and beta 0.

Is it a good representation? Well, it is good given that we have these assumptions satisfied.

And, as soon as we depart from these assumptions in any way, that is where we are going to

look at spatial dependence. So, spatial dependence is going to specifically interfere with this.

So, spatial dependence will interfere with A2 which is the causal inference, very the most

perhaps the most crucial assumption.

And, A3 is the assumption that the variance-covariance matrix is diagonal, off-diagonal

elements are 0 and all the diagonal elements are the same. Spatial dependence will interfere

with these two assumptions. And, this is where we are going to first introduce spatial

dependence or spatial regression as in the next lecture. And, then using this recap, we are

going to then depart from or relax the two assumptions that are A2 and A3.

And, then we are going to figure out how we can estimate these models; even when there is

spatial dependence and they interfere with the assumption of the least squared estimator,

making it a not best linear unbiased estimator. So, it will with A2, it will introduce bias, and

spatial dependence will introduce bias. And, with A3, it will not, it will interfere with the fact

that the estimator is best or not.

What we will see is that when A3 fails due to spatial dependence, we will have a better

estimator. We will have something else, that will be a better representation of the true

estimator. So, thank you very much for your attention. I understand that this recap could be a

little bit fast-moving for some people, who have not seen regression analysis before. I highly

encourage you to go over these lectures again.



This set of lectures 16 again and read Wooldridge’s book, read the introduction of regression

analysis from that book. Even if you have seen regression analysis before, please read

Wooldridge’s book. And, after that, I believe the upcoming lectures will become much easier

to understand conceptually.

So, thank you very much for your attention and we will see you in lecture 17 next.


