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Lecture - 17B
Spatial Dependence in a Regression Model

Welcome back to the second part of lecture 17. In the first part, we established a spatial

dependent specification in the R regression model. And then, we came to a point where we

wanted to evaluate the impact of this spatial dependence, as specified through the

variance-covariance structure of the error model on the least squares estimators, right?
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So, we figured that the least squares estimators look like what we see on your screen here. So,

we were working on a model of housing prices and we are modeling those as a function of

observed data on the spaciousness of a house at a given location Sn, which we index by the

number of rooms, right? But we really want to understand how spacious this property about

which we are trying to understand the pricing.

So, we figured that we will get an estimate of this coefficient beta 2 based on the least

squares algorithm which is beta hat 2 least squares LS which is equal to the covariance



between P and R divided by the variance of R. We also figured that this beta hat 2 o LS is

also a random variable by itself. And so you know what we also have to report is its

precision, its precision metric which is the variance of beta hat 2 LS, right?

What we also know from our previous lecture that is lecture 16 is that under the classical

assumptions, a least squares estimator is blue. When I say it is blue, I want to say that it is the

best linear unbiased estimator. Now, these are the properties of this beta hat 2 LS under the

assumptions A 1 to A 6. But we know that A 3 is violated under spatial dependence of model

errors, correct?

So, now how do we go about evaluating these properties? Well, beta 2 hat o LS or LS is

going to be still an estimator. It will not be a non-estimator just because there is spatial

dependence. It is still an estimator. It is also still a linear estimator. Remember, it is linear in

P. So, if the coefficient parameter is linear in P which is linear in P; that means, that it is still a

linear estimator, right?

The question now will arise, is this estimator unbiased and is it best? Is it the best estimator?

So, we understand what unbiased means. So, basically what we are asking is how the

expectation of beta 2 hat LS given the data on R compares with the true value beta 2. And

second best means that this estimator is the one which will have the minimum variance upon

all the estimators of beta 2, right?

Now, we have to evaluate whether or not both these properties hold when A 3 falls apart. So,

let us go out and evaluate, whether or not the two properties best and unbiased you know still

stay afloat when we introduce spatial dependence in the model errors that we relax

assumption A 3. So, let us do that.
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So, what we are saying is we are asking is beta hat 2 LS is unbiased when delta Sn or let us

say I do not want to complicate the notation when deltas that is the model errors exhibit

spatial dependence. This is the question. So, what we have asked is that does the expectation

of beta 2 hat o LS given the data R, on R equal to beta 2, where beta 2 is the true value which

is the population model, right? It is the truth that we are after. We do not ever observe the

truth.

But we are still able to sort of figure out whether or not, these things, you know what we have

gotten from a data-driven estimate is close enough or not to the truth. So, I am going to write

down work with the LHS. I have to work with the LHS. So, I have an expectation of beta hat

2 LS given R which is to say that I am working with an expectation of you know, So, just to

make my notation easier, I am going to just say expectation conditional R is E sub-R, this

means I am working with conditional expectations.

In conditional expectation R becomes the constant, right? So, we are going to treat R as a

constant value when we apply this expectation operator to the formulation that we are going

to just write, right now. n equals 1 to N, P Sn minus P bar times R minus R bar. Remember,

everything that is R, is R Sn or R bar, they are both constants with respect to this expectation

operator; R, R bar the whole square.

Now, we know that this P Sn through my regression model is beta 1 plus beta 2, R Sn plus

delta Sn. So, the only thing that is random inside the expectation operator is going to be

indeed the delta because R is constant. We are looking at conditional expectations. Beta 0 and

beta 1 are both constants, they are just true values of these parameters. They are constant

values, right?

So, the only thing to look out for is delta Sn. So, I am going to just say that you know you can

write down, you can do the mathematical manipulation, and you can show that this

expectation, the stuff inside the expectation operator will reduce to the following.
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So, we will have expectation beta 2 hat LS is equal to beta 2 plus summation n equals 1 to N

expectation R Sn times delta Sn divided by n equals 1 to N, R Sn times minus R bar the whole

squared. So, what is interesting now to us is this expectation of the product of my explanatory

variable R and the error term delta, right? This term is nothing, but a representation of the

covariance between R Sn and delta Sn.

And this covariance is nothing, but a representation of the expectation of delta given R,

which is 0 by the second assumption, right? So, the second assumption suggested that the

conditional expectation of errors is conditional on the x which is, right when I say conditional

expectation it is equal to 0.

So, A 2 is not relaxed, and A 3 is relaxed, right? So, when I say A 2 I would always say refer

to lecture 16. So, lecture 16 as you can see is very important, it is very critical, right? So,

what will happen is that this second term will vanish, right? So, that means, this second term

will vanish and I am left with beta 2. So, the expectation of beta hat 2 LS given the data on R

is just the true value beta 2. That means, very important that the least squares estimator is

unbiased in the presence of spatial dependence in model errors, right?



Specifically, I am only relaxing A 3. So, you know we will see that it can have more

complicated implications. But for now, so far as spatial dependence is concerned we are only

relaxing A 3.

So, even when A 3 is relaxed, beta hat 2 LS is unbiased. It is a good guess of you know the

true beta 2 value. So, and by extension, this will mean sorry, I will use a different pen here.

This will imply that beta 1 hat LS which is nothing, but the P bar minus beta 2 hat LS times R

bar is also unbiased.

So, the regression estimators are unbiased in the presence of spatial dependence. This is a

form of heteroscedasticity in data. So, we said that A 3 ensures homoscedastic errors, right?

So, we are working with a form of heteroscedastic error. Again, you should go back and read

Wooldridge’s book if you have not heard of this term before.

Although, I believe that you know having a more general variance-covariance matrix,

meaning that it is heteroscedastic and non-homoscedastic, non-spherical errors is a sufficient

explanation. But for details please refer to Wooldridge’s book, right?

So, we have this very important result that you know, even when we have the spatial

dependence going on least squares which is seemingly simplistic, is still does a very good

job. I mean I have a very good guess of the point estimate. My point estimate is a very good

guess of what is happening in the reality. So, going back and seeing saying, you know I have

figured that I am also going to have unbiasedness, so far as the presence of spatial

dependence is concerned which relaxes assumption A 3.
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So, as a next step we are going to now ask whether we are going to ask is beta hat 2 LS is the

best. When I say best, I mean minimum variance, right? The best estimator of beta 2 is in the

presence or let us just simplify this and say when covariance delta u delta V is nonzero for

every or some not every; for some locations location pairs u not equal to V, right?

So, some pairs of locations that are separated by a distance or let us say a lag, a spatial lag,

we have you know do we still have a best estimator? So, now, for that, we have to worry

about beta hat 2 o LS. So, I am going to look at the variance of beta hat two least squares,

given data on R which I am now going to define as VR, just for concise notation beta hat LS

which is equal to the variance of R; not variance of R variance conditional variance operator

on to i equals 1 to N.

So, I am just going to write the formulation of beta hat 2. So, this is going to be P Sn minus P

bar R Sn minus R bar divided by summation i equals 1 to N, R Sn minus R bar the whole

square, right? This can be then shown to be equal to summation n equals 1 to N, R Snminus R

bar times P Sn divided by summation n equals 1 to N, R Sn minus R bar the squared.

Now, I have said that I am taking this variance conditional on R. So, that means, R is a

constant. So, the denominator will directly come out, right? It is a constant. So, when I am

with constant comes out of a variance operator it comes out as a whole square. So, it is going

to come out as 1 over summation n equals 1 to N, R Sn minus R bar whole the thing squared,

the variance of summation n equals 1 to capital N, R Snminus R whole thing times P Sn. So, it

is all in the denominator.

Now, we had said just like in the case of unbiasedness when you were evaluating it, we will

substitute P Sn with beta 1 plus beta 2 R plus the error delta.
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And then, you can show, of course, you will be able to show that VR is equal to 1 over

summation n equals 1 to N, R minus R bar the squared whole squared variance of. Now, R is

a constant, so you know as we move, as we multiply R minus R bar, R minus R bar with beta

1, beta 2 R, we are working with constants. And the variance of constants is 0.

So, the only thing that is going to remain inside the variance operator is the random variable

term delta. So, I am going to work with 1 to N, R minus R bar times delta Sn.

So, as in case 1, I am going to work with assumption A 3 holds that there is no covariance

between the error term at different locations. So, now, if I were to focus, if you were to just

you know bring your focus to this variance term, right of course, its variance is conditional on

R. So, R is a constant. But now evaluate it a little bit closely.



So, I have written the variance of R with a constant. So, I am going to just replace this with a

constant A, of course, An, but it is a constant. And this is by a random variable delta n just to

sort of make the notation easier. So, summation n equals 1 to N, An delta n. This variance if

capital N were just 2, you would write the following, you would write this as An squared

variance of delta sorry; A1 squared, right?

So, I am going to work with it for a case when N equals 2, this will be the A1 squared

variance of delta 1 plus A2 squared variance of delta 2 plus 2 A1 A2, the covariance of delta 1

and delta 2, right? This is for the case when we had N, capital N equal 2, right? We are very

well aware of how the variance operator works for that simplistic case.

Now, extend that understanding to the general case when we have more than 2 variables,

random variables being summed inside a variance operator. So, my random variables are

delta S1, delta S2, delta S3, all the way 3 through delta Sn. So, this variance in the general

form, when we have homoscedastic or spherical errors, all the covariance terms are going to

vanish to 0. So, all I am going to remain with is the term with the variance.

And standing outside is the coefficient vector which is squared. So, I am going to use this to

write down the variance of beta 2 hat LS given R you know when A 3 holds. So, I am going

to do that now. So, when A 3 holds, the variance of conditional variance of beta 2 hat LS is

going to be 1 over summation n equals 1 to capital N, R minus R bar the whole squared and

the whole thing squared times summation; I am going to apply my understanding of how the

variance operator works when the covariance terms are 0.

So, n equals 1 to N, R Sn minus R bar squared, and then apply the variance operator on each

of the delta and Sn, or the delta Sn. And this variance of delta Sn, this value is nothing, but

equal to sigma square. It is a constant.

So, the constant will directly come out of the summation term. So, I have 1 over summation n

equals 1 to N, R minus R bar squared whole thing squared, times sigma square times n equals

1 to N, R minus R bar the whole thing squared.

And hence, I have, I can cancel one of the denominators, you know terms, with what is sitting

in the numerator about summation R minus R bar squared. So, that is why the variance of

beta 2 hat o LS will come out to be sigma square divided by summation n equals 1 to N, R

minus R bar the whole squared.



Now, where now it starts to appear, if A 3 were to be violated or if A 3 does not hold, or it

fails where will the difference apply, well the difference will apply in the case that these

covariance terms will no longer be 0, when if A 3 is violated. So, that is something we are

going to look at as the next case.

𝐶𝑎𝑠𝑒 𝐼𝐼 𝑤ℎ𝑒𝑛 𝐴3 𝑓𝑎𝑖𝑙𝑠
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𝑁𝑜 𝑙𝑜𝑛𝑔𝑒𝑟 𝑚𝑖𝑛𝑚𝑢𝑚 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 𝑒𝑟𝑟𝑜𝑟𝑠.

So, let us say case 2 when A 3 fails, right? And we are talking about a very specific structure

that we have articulated, you know in the covariance, variance-covariance matrix. That is to

say that with the given structure, you know given the variance-covariance matrix of model

errors that is to say that covariance of delta u delta V, right?

And let us say if we were to evaluate it for all the locations in u being S1 till Sn and V being

locations S1 till Sn, right? So, these are variables, we know that we can write this, we can

define this as n by n matrix because you will have n factors of the rho where u is varying

given a value of V. And you know for each given value of u or location of u we can vary the

V locations from S1 to Sn, right?



This omega matrix for the given structure will be written as follows when u equals V. We

have the covariance given as, let us write it down that we have this as sigma squared rho u

minus V. So when u equals V which is a diagonal element, I have sigma squared, sigma

squared all the way sigma squared. When I move from location 1, S1, when I will move from

location S1 to location S2, I have my variance changes to sigma squared rho. When I move on

to S3, my covariance will become sigma squared rho squared, all the way till sigma squared

rho N minus 1.

Similarly, when I am looking at the second S2, location S2, in the row and I move across

columns S1 will have sigma squared row that is u minus V is just 1. Here I have an S3 also I

will have sigma squared rho because 2 minus 3 is also equal to 1 and till sigma square rho N

minus 2. So, I can keep going. The first term here will be sigma square rho N minus 1 which

is the difference between capital N and location 1, and I have capital Ns everywhere. So, I

hope this is clear sigma square rho N minus 1, keep going sigma square rho and so on and so

forth, right? So, now, the off-diagonal elements are nonzero. This is a specific form of

heteroscedasticity that we have introduced through spatial dependence.

So, now, if the covariance terms are nonzero, let us specify the variance of beta 2 hat again.

So, we are going to specify this for this case, right? So, I am going to just write it down again

I have a variance of beta 2 hat least squares is given as 1 over summation n equals 1 to N, R

minus R bar the whole squared, the whole thing squared. And then the variance of R

summation n equals 1 to N, R minus R bar times delta Sn.

I am going to write this as follows. I am going to generalize it, You have seen this form

before in one of the earlier lectures. I am going to write down this as summation n equals 1 to

N and summation m equals 1 to N, right? So, I am moving u’s and V’s one by one.

I am going to write it as R Sn minus R bar R Sm minus R bar times the covariance of delta Sn

comma delta Sm. So, this is the most general form of the variance, the variance of beta 2 hat

o LS. And very clearly you will start, of course, with these covariance terms, we will be

directly sourced from the omega matrix which is my n by n matrix of the variance and

covariance factors, right?

But what happens is that this is no longer equal to the minimum variance form which is n

equals 1 to N, R minus R bar the whole square. So, we no longer have minimum variance in

case of spatial dependence in model errors, right? So, the final implication is that the least



squares estimators are not the best, right? So, they are no longer best under spatial

dependence. So, this is the implication that I no longer have a very precise estimator. So, least

squares are still unbiased, but it is not so precise, right?

So, this is the implication that we have drawn from when we introduce spatial dependence to

the regression model, right?

𝐻𝑒𝑛𝑐𝑒,  𝐿𝑆 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 

𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑖𝑛 𝑚𝑜𝑒𝑑𝑒𝑙 𝑒𝑟𝑟𝑜𝑟𝑠.

⟹𝐿𝑆 𝑎𝑟𝑒 𝑁𝑂𝑇 𝐵 𝐿 𝑈 𝐸

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 𝑢𝑛𝑑𝑒𝑟 ℎ𝑒𝑡𝑒𝑟𝑜𝑠𝑘𝑒𝑑𝑎𝑑𝑡𝑖𝑐 𝑒𝑟𝑟𝑜𝑟𝑠:  

.𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝐿𝑒𝑎𝑠𝑡 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 𝑜𝑟 𝐺𝐿𝑆 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠

So, as a next step, right, first we are going to just say that hence we are going to state

formally that least squares estimators are not efficient, not efficient in the presence of spatial

dependence in model errors, right? And now this spatial dependence in model errors as we

have seen, as have stated earlier is a form of heteroscedasticity, right? So, that means, that LS

are not blue, right?

And remember, they are still linear, they are still unbiased, they are still an estimator, but the

trouble is they are no longer best. That is why they are not you know a blue estimator. Now,

what I am going to do next is I am going to state that the efficient estimators under

heteroscedastic errors in general are called the generalized least squares estimators or better

known as the GLS estimators.

Now, given, so basically we have moved from a specialized homoscedastic

variance-covariance structure to a more general variance-covariance structure where the

off-diagonal elements are not 0. And as a consequence, the efficiency property is taken away

from the least squares, the ordinary least squares estimator. But they are then restored if we

work with what is called the generalized least squares estimators.

So, in the next part of this lecture, what I am going to do is I am going to formally introduce

the GLS estimators. And then, I am going to provide you with a general strategy for

estimating such estimators, to getting such coefficient estimators when you have spatial

dependence of a general form in the data, alright.



So, see you in the next part of the lecture.

Thank you for your attention.


