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Spatially lagged variables in regression models

Hello, everyone and welcome back to Lecture 19 of Spatial Statistics and Spatial

Econometrics.

In this lecture, we will build on the knowledge that we have accumulated till now about

spatial regression models. So, at first, you know we studied the impact of spatial dependence

in model error. What does that mean? That means, if I were to think about a regression model

y equals x beta plus u which is a multivariate regression model where y is my outcome

variable, x are my regressors and beta are the model parameters and u is the error term

something that I could not explain in this model, some of these things we have seen quite

many times in the past.

Then if there is spatial dependence in model error where does spatial dependence come from?

We have discussed that you know what we mean by that, is that the variance of u given x is

not equal to sigma squared IN basically signifies the situation, where the variance of each ui
that is u at each location i is going to be a sigma squared and off-diagonal elements are 0.

So, there is no dependence in spatial error when we relax this and we introduce spatial

dependence in regression models that is to say that variance or covariance of ui uj where i and

j can be seen as location markers. Then this term will be not equal to 0 at least for some i not

equal to j locations.

So, what we are doing is we are moving forward or we are relaxing this assumption of

spherical errors and we are moving to a situation where the errors may be non-spherical in

nature also termed as heteroscedastic systems, and then we talk about what is the impact of

having this non-classical situation or setting. And, we have seen that this is going to be quite

prevalent with spatial regression models.

In fact, when we studied spatial statistics spatial dependence, spatial clustering is one of the

fundamental patterns with spatial data, right? So, when we come to regression modeling,



spatial dependence in errors is not surprising. In fact, it is a fundamental feature of the spatial

data.

If with our example of the price of homes, you know prices of homes are clustered together

as well in their levels in the sense that you know highly priced homes are likely to be located

in regions where all other homes are also highly-priced, right? And, that is how we have these

you know terms like posh communities which means that in this community all homes are

highly priced, right?

So, this phenomenon then turns out as this feature where mathematically we can say

covariance of this unaccounted term in my regression model is exhibiting spatial dependence.

We looked at inference properties that is you know what happens if this is a situation to my

regression estimator and we saw that the regression estimator will still be unbiased, but it will

now be inefficient.

We then introduce this FGLS estimator with the variogram model that we looked at in the

previous portion of this course, right?

The second type of spatial dependence that we have seen is through Manski’s dependence

reflection problem, right? Manski’s reflection problem applies to settings where let us say,

you know in a peer network when I look at the performance of any student, it is not just a

reflection of their own aptitude and their effort levels with regards to studying the course, but

it also reflects the peer group in which the individual belonged, right?

So, in a way, an individual’s performance is a reflection of the peer group’s performance and

vice versa. In such situations, we have seen that it is harder to argue causal inference and then

we studied methods for reconciliation of this reflection problem.

And, finally, we introduced this idea or this notion of spatial lags in regression models to

generalize how to work with spatial dependence in specifying spatial dependence either in the

outcome mean or in the error term in a more generalized setting like the irregular lattices,

right? So, you can go back to previous lectures and revise these concepts, right?

So, we have seen this earlier, but I am just presenting this idea of spatially lagged variables in

a regression model. I have this first thing called the spatial lag or spatial autoregressive

model, right? It is a model that comprises spatially lag-dependent variables.



An example here is written as W times G something again we have seen in the past that this

is suggesting W is called as the weights matrix, the weights matrix characterizes

neighborhood properties. It generalizes this notion of spatial lags, right, and W times G is

accounting for the average behavior of what is happening in the neighborhoods vis a vis this

outcome variable G, right?

So, the spatial lag model looks like the following we have an outcome variable G in this case

we have seen an example for groundwater data. So, let us say we are trying to model

groundwater dynamics and we have a column of data on groundwater levels at different

locations that is let us say different wells, right? And, this G is then modeled as a function of

it is lag GL, which is the lag bearing, it is a weighted average of what is happening around

each with regards to each location I.

There is a parameter sitting in terms in front of this GL parameter, this GL variable. So, this

parameter rho is a measure for the extent of correlation or dependence between the outcome

variable and it is the neighborhood average plus our traditional x beta plus u, right? This

lagged dependent variable is then included as a regressor or as an independent variable we

call this model a spatial lag model.

Note that GL is nothing but W times G which is to say that there is a N by N weights matrix

that characterizes neighborhood properties something that we have seen in the previous

lecture. I will just revise it very quickly in a minute and then G is a N by 1 matrix vector. So,

overall GL is nothing but an N by 1 vector, right?

We will emphasize the need to check matrix and vector dimensions going forward when we

work with these models because you know space by its own virtue brings in heavier notation

keeping track of neighbors. you know I have neighbors as j, k, and l; j may have neighbors as

k, l, but, and m, but not i, and so on.

So, if you have those situations arising where some of my neighbors are not you know

neighbors of my own, other neighbors then to generalize that notation we use matrices, which

are very convenient, but then when we actually do the math and we specify these things we

should keep a track of the dimension of these matrices something we will emphasize as we go

forward.



The second type of spatial regression model that we have seen is called a spatial

cross-regressive model or the SLX model in this case I will be modeling G as a function of X

beta, but also including W X which is nothing but the lagged version of X, right?

So, if I am thinking about my example of let us say groundwater data and one of the

regressors is rainfall. Now, rainfall is very important in explaining groundwater levels. If it

rains more there will be more regeneration and more sort of water entering the groundwater

reserve. And, the groundwater level will come up and hence my observation of groundwater

levels will change.

Now, you can imagine that when you look at groundwater level or groundwater recharge at

any given location it is not only going to be the rainfall at that very location. It is also to

account for the rainfall levels around or in the neighborhood of that locations because of

various geographic regions, right? The location of interest by itself may be in a low elevation.

So, you know rainfall that happens around might all run off to this location and hence feed

into groundwater levels at this given location of interest. So, in those cases a weights matrix

can be applied to these variables and we can define a variable XL which is nothing but the lag

of the covariance. And, then we can have a vector gamma and u this is an SLX model.

The final form here is called the spatially lagged model where what we say is that we have G

equals X beta plus u such that u exhibits spatial dependence. Again, we will carefully one by

one review these models. So, there is nothing to worry about, but I just wanted to provide a

quick exposition of these so that in enough coming discussions, these notations start to

become more and more comfortable with these notations ok, alright.

So, just before we move forward I just want to recall this idea of spatial weights matrix

matrices. So, you know the weights matrix characterizes a device that characterizes

neighborhood connections. So, we have an abstract situation on the left, which has been

adapted from Anselin’s lectures. So, we have these 6 polygons, some of them share borders

some of them do not share borders and we can focus on let us say polygon 6 and polygon 1,

right?

The weights matrix on the right-hand side is representing the neighborhood structure for this

given polygon structure, right? So, because I have 6 spatial units of interest, the size of this



weights matrix is 6 by 6 because the row represents each unit 1 2 3 4 5, and 6 and columns

are representations of neighbors, right? So, columns also have representations of neighbors.

Now, because 1 is not her own neighbor so, the diagonal element is 0, right? It is 0 2 is not

her own neighbor, 3 is not her own neighbor, 4 is not her own neighbor, 5 is not her own

neighbor and 6 is not her own neighbor. So, all the diagonal elements are 0. The off-diagonal

elements switch from 0 to 1, only when these spatial units share a common border, right? So,

that is the characterization of spatial linkage in the data, right?

Now, with 1 2 4, and 5 are neighbors. So, we have one sitting right you know at column 2

row 1, column 4 row 1, and column 5 row 1. Note that we still have 0s in columns 3 and 6

with respect to rho 1 because they do not share a border with unit 1, right? My second unit of

focus is 6. So, 6 is neighbors with 1 only, has only one neighbor which is 3.

So, in the row that characterizes the neighborhood structure for unit 6. I have 0s everywhere

except for column 3. So, I hope this makes things clearer something that we also discussed at

length earlier was the row standardizations of these weights matrices and we discussed why

that is a critical idea.

So, I am not going to go over it you can go back and look at it, but the point that I am trying

to make here is that every time going forward we see a W, I actually imply W tilde that is I

am always implying the use of a row standardized weights matrix. We cannot use the row rho

weights matrix and it is good homework for you to understand this lecture, you can go back

and review the previous lectures and see why is row standardization a very critical entity.

So, now we are going to start with what is called the spatial lag model and look at its

characteristics in detail. So, let us write out the spatial lag model and go from there. So, we

have y equals rho W y plus x beta plus u. So, we are including a spatial lag, and like I said

whenever and wherever I use this matrix W, I mean a row standardized version of it. So, you

can go back and check, but it is very important to understand that we are always using a

row-standardized weights matrix.

So, I have a column of data that is N by 1, y is N by 1 because I have data that has ID

location markers, you can have the coordinates and then I have y, right? So, I have let us say

10 data points then I have my x y coordinates for these 10 data points and then I have values

let us say 10, 9, 7, 6 and let us say 10 again, right? So, I have this N by 1 column which



characterizes my dependent variable that is what this y in this matrix form of this regression

signifies.

W times y we know that if we have 10 entities the size of W will be 10 by 10. So, N by 1

entity the size will be N by N, y we know is N by 1. So, these two combined will be an N by

1. X is an N by K. So, there are K different covariates and you have N data points for each

covariate and for each covariate I have my parameter vector given as beta, right? And, u is

again N by 1.

So, I have an N by 1 on the left-hand side and an N by 1 entity on the right-hand side which

is a must because I cannot really sum two vectors of different dimensions. I cannot be

summing N by 1 with some m by 1 or l by 1, right? So, I need exactly the same dimension for

each element that is linearly summed together. So, it is a nice check for us as analysts when

we are doing these things analytically.

So, here rho is called the spatial auto-regressive coefficient, like I have said this coefficient

measures the extent of spillover effects that I have from its neighbors and vice versa, right?

So, I also exert impact or spillovers on her neighbors, right? So, the spillovers are both ways

right we have talked about that in spatial data it is not like time series, it is not unidirectional,

it is multi-directional, right?

And, also we do not have a regular lattice to work with we have a regular spacing of entities

in space and they are of different sizes and so on. So, you have to account for those situations

right? So, we can call this equation 1 and we can rewrite equation 1 as under we can say y

minus rho W y is equal to X beta plus u.

So, now, if we look at the left-hand side as a consolidated regressed and or the dependent

variable then on the right-hand side I have something that I am very used to with regression

analysis, right? So, this is an important enough equation. So, I am going to call it equation 2.

I can rewrite equation 2 as follows. I can say I minus rho W y equals x beta plus u.

So, this I is an identity matrix, now the question is what should be the size of I? Let us think

about it now. So, y is N by 1, x is N by K, and beta is K by 1. So, I have an N by 1, and u is N

by 1, right? So, I need an N by 1 on the left-hand side, right? W I know is an N by N, rho is

just a scalar. So, it is just 1 by 1, right? So, it is just a scalar entity, I because W and I, we



have a linear operator which is a subtraction sign in between I must have an identity matrix of

size N.

The identity matrix is a square matrix, N by N matrix where the diagonal elements are all 1s

and off-diagonal elements are 0, right? So, I minus rho W is some kind of a filter, it is kind of

a filtering of the spatial impacts from the overall I, right? So, I have this I minus rho W times

y. So, I have an N by N sitting here, N by N times N by 1 is an N by 1 so, kudos, right? So, I

have N by 1 again as each element in this equation. I am going to call it 2 Prime.

So, now, this I minus rho W is known as a spatial filter, right I am going to say this is similar

to the detrending device or the detrending activity in case of either time series data if you are

used to, if you have seen time series data in the past or even when you use panel data, you

can detrend your data. So, this is a spatial filter.

As a next as next piece of activity, I am going to pre-multiply 2 prime with IN minus rho W

inverse. What does that give us? It gives me y, it returns back my original dependent variable

equals I minus rho W inverse X beta plus I minus rho W inverse u. Again I will check

dimensions very very important very very important, check dimensions because we are

working with a heavy matrix.

Matrices you know checking dimensions will provide us a nice quick check on whether we

should move forward or hold on and make sure that we are, you know whether we should

revisit these things. So, I am going to do that I have a N by 1, I am used to this. I minus rho

W we saw here it is an N by N matrix. So, it's inverse the inverse of an N by N matrix is also

N by N. So, I have N by N sitting here, I have N by K and K by 1 as X, and beta again I have

an N by N and an N by 1 as u.

So, now I have, this will give me N by 1 N by N times N by 1 is again N by 1. So, nice, and

N by N times N by 1 will be N by 1. So, we are done. So, we have what we can work it looks

like a legitimate regression equation. So, I started with model 1, and all I am providing you

are some algebraic manipulations of it, but as we move forward these will come out to be

crucial in terms of providing interpretation to these devices.

So, with that we are going to move to a question that is usually the question that applied

econometricians ask or applied social scientists ask in general or applied sciences you know

scientists are also interested in is that what is the change in y as a result of a small or marginal



change in X. So, if I were to shock this regressor or covariant matrix X by a little bit, let us

say I move from a lower rainfall to a higher rainfall world lower, population to a higher

population world a little bit what is the impact.

So, of course, when I am changing in X, I can change anyone covariate. So, I am talking

about these things in the spirit of all else held constant. So, my query is in mathematical

language so, I have written an English language term, now I am going to write down the

corresponding mathematical language term is basically saying what is the expectation of y

given a small change in X. So, I will change X and I want to know as a result what is the

average y.

So, this will be equal to, because all else is held constant, so, u will be kept constant. So, as X

shocks, as I get a shock in X, I do not see any shock in u. So, I have I minus, by the way, I am

looking for a change in y condition on change in X. So, I have I minus rho W, I is of size N

because we have seen times delta X into beta, remember beta is a parameter which given data

we can estimate from the model, right?

So, you can imagine that let us say you have beta and then you are trying to evaluate some

policy or some shock in this variable X. Now, we have this I minus rho W with an exponent

of minus 1. So, this can be then further expanded using the power series expansion of an

inverse function, and for that, I have a specific resource for you to read where I am going to

request you to read inverse series expansion and more generally Taylor series expansion.

If you have heard of this mathematical concept of Taylor series expansion you are basically

going to apply that, but as a special case, you know you can read power series expansion and

try and understand where we are coming from. So, I am going to just say here to apply power

series expansion to I minus rho W inverse. So, I minus rho W inverse can be then written as I

plus rho W plus rho square W square rho cube W cube keep going as an infinite series.

And, then obviously, I am going to just put a marker here just a second very very important

read Taylor series expansion. So, I am going to just name this new important equation which

is the change equation in expectation as equation 3. And, then with this idea of Taylor series

expansion, I am going to take it to assume that you guys are going to go back and read what

the Taylor series expansion is, if you are a student of economics it is really important.



In fact, Taylor series expansion is what links the comparative statics of the utility

maximization model or the expenditure minimization model, profit maximization model, the

comparative statics of these models or these algorithms the linkage between them and our

regression models and our exercising or mobilizing the causal inference idea is via the Taylor

series expansion.

So, that is a matter for separate discussion, but what I am trying to motivate you to do is to

definitely read and study the Taylor series expansion at your time it is very important. So,

then 3 will become the following. So, the expectation of change in y conditional on a small

change in X will be can be written as I plus rho W plus rho square W squared plus rho cube

W cube plus keep going times delta X beta.

I mean you can set delta X equals 1, if you want and you will see how my model parameter

beta will then explain the total change, right? Now, I can rewrite this as equal to delta X beta

because once I multiply I with anything right any matrix multiplied by the identity matrix is

the matrix itself plus all of this remaining term of the rho W plus rho square W squared rho

cube W cube keep going till times delta X beta.

Now, this is a very tractable intuitive entity. Why? Because delta X beta is something that we

are used to if rho was equal to 0, if there was no spatial impact there was no spatial lag term,

then all we are left is delta X times beta. This is something that we are very much used to

while conducting an understanding of the change in y due to the change in X.

So, in the case of spatial regression analysis, we will interpret delta X beta as the impact of a

marginal change in X at the location of this change or shock, right? So, at the location of

change you know this is how much impact I will have if there were no spatial impacts there

were no spatial spillovers by virtue of this model parameter rho, then all I have is delta X

beta, I am very much used to it.

This is further defined as what we call the direct effects of change in X. The second effect

you can imagine is called the indirect effect and that is this remaining term which says the

impact of a marginal change in X on first-order neighbors, second-order neighbors,

third-order neighbors, and so on and this I am interpreting as an indirect effect.

Now, I have written these first-order neighbors, second-order neighbors, and third-order

neighbors in different colors why? Because if you pay attention to what you are looking at,



rho times W, W characterizes linkage with neighbors. Now, this rho W is a marker for

first-order neighbors, this is the first-order spatial spillover rho square W square has this term,

W square. What is W square? W times W, right?

So, now, a square matrix multiplied by itself is going to express you can work it out on your

own time, but this expresses a second-order spillover effect. So, if I have an impact at the

location I, rho W explains an impact on locations which are immediate neighbors of I, but by

virtue of change at locations which are immediate neighbors of I will have also an impact on

the neighbors of those first order neighbors of I that is this captured by this rho square W

square. So, this is the second-order impact and then we have this third-order impact.

So, we can then interpret expectation delta y given delta X as we will rewrite rho I plus rho

W cube dot dot dot dot delta X beta this entire entity is called the spatial multiplier effect. So,

it is a device that is able to measure the spatial multiplicity we will look at some of the

properties through some, you know we will just formalize these things through some notes.

So, the first note that I want to make here is that whenever note that whenever rho is less than

1. In fact, I mean it can be positive or negative we are usually working with positive spatial

spillovers I mean that is the idea of spatial contiguity. So, we are usually working with a

positive rho, but when rho is less than 1, the spatial multiplier effect declines exponentially

with distance, right? What does that mean?

So, if I go back to my formulation, let us say, if I were to draw a graph, where I have distance

on or some kind of a lag measure on the x-axis and I have the impact measure on the y-axis,

then the origin on the x-axis will mean own location, where the shock has happened. I will

then have first-order neighbors, farther than them will be second-order neighbors, and farther

than them will be third-order neighbors and I can keep going like this on the x-axis.

What is the impact at own location? The direct impact measure, which is delta X beta. What

about at the next first-order location? Well, it is going to be slightly lower, it is rho time’s

delta X beta. So, you know it is going to be rho W delta X beta, right? At second-order

neighbors I am going to have rho square W square delta X beta, and then so on and so forth

right?

So, I will have an impact here then an impact here, an impact here, here, and so on. So, what

p by virtue of the specification of I model because I have spatial dependence through this row



parameter through the specification of this because of the way we specify the spatial lag

model the spatial multiplier effect takes the takes an exponential shape in terms of the decline

of the effect through a distance which is intuitive, right?

I mean if you are going to have a shock in terms of spatial spillover of course, the spatial

spillovers are going to spillovers by themselves are going to become weaker and weaker and

weaker as we go away from the entity of impact right? So, that is the first pointer the second

note or the second pointer is that in the presence of a spatial lag that is W y, we have the total

effect of change in X that is delta X is greater than delta X beta, right?

So, if you ignore spatial dependence, you are going to account for all of this you know you

are going to inadvertently either this will all come to the direct effect.

So, it will be a biased effect because it will also account for what is coming as a spillover,

right, further, it might actually enter you know as a confounder and hence articulate the bias,

right? So, they are the same things, but the idea is that you will be misinterpreting the effects

as totals will not come out to be exactly as delta X beta.

So, notes continued, the third note is on the direct and indirect effects of a spatial lag model

or in a spatial lag model, right? So, you have seen these things earlier. So, the direct effect

due to the change in X, I am just going to say delta X is just delta X beta, and the indirect

effects due to delta X is given as rho W plus rho square W square plus rho cube W cube plus

keep going times delta X beta, right we have seen this.

This can be written as I minus rho W inverse minus I times delta X beta. So, just simple

algebraic manipulations are able to provide us with these understandings. What is interesting

maybe is the visualization. Let us visualize these effects. So, let us say I am talking about an

entity I right the entity I can have the following neighbors, right?

All these entities could be just say j1, j2, j3, j4; entities j can themselves have their own

neighbor’s right. So, j’s can have their own neighbors and we can then term them as k1, k2, k3,

k4, k5, k6, k7 right these entities can then further have their own neighbors. So, of course, in

space, every entity will have neighbors. The direct effect is the change that happens delta X

beta due to shock at the location I, right?



What spills over to its immediate neighbors is given by this W times rho you know multiple

this is the first order effect. The second-order effect is characterized then the second-order

indirect effect is characterized as rho square W square delta X beta, right? So, these

mathematical entities have very interesting characterizations so as to say, spatially.

Now, as an application for the policy, you know what this really means is that the spatial lag

model is able to measure the effect of change in a policy variable X at a certain location I that

extends beyond I, right? So, a policy shock on location I can have an effect beyond I to its

first order neighbors to its neighbors or neighbors of neighbors or neighbors of neighbors of

neighbors.

So, which order neighbors that is not the point is a shock at the location I can have an impact

on locations beyond I right in other words the spatial lag model will allow us or help us to

simulate the spatial imprint of a policy change. So, I am going to write it down that a spatial

lag model helps us simulate the spatial imprint of a policy change ok should think about it a

little bit.

So, the last topic in spatial lag models is the impact of the misspecification of OLS estimates

on inference. So, we have written down this model, we have to say y equals rho W y plus X

beta plus u. Here this W y is nothing but y lag, of course, you know the vector notation is

used differently between what I am saying, and what is expressed on your screen. So, I am

just going to say that y under the bar is the same thing as y vector all I am trying to say is we

have a column of data, alright?

So, the question is what if I were to ignore this spatial regression spatial lag term when it

indeed should have been in there by virtue of the population process? Well, if it is ignored it

is going to go and sit in the unobservable term as if you know I did not observe it because I

have ignored it. So, what is the implication?

So, you know Luc Anselin provides a very nice depiction of you know what happens if you

ignore these things through a simulation. So, what you see on your screen is a scenario where

this parameter rho varies from 0 to 0.9. I have said earlier if rho equals 0, the total effect is

just delta X beta, but if rho is not equal to 0 total effects is greater than delta X beta, right?

So, this density function in blue or in purple characterizes the expected value of beta hat

when rho is 0. This is the precise effect parameter when there is no spatial order correlation



data. So, if there is no spatial order correlation data and we ignore it we are fine. But, let us

go back and look at an extreme case where let us say rho was equal to 0.9 which is this

brown-looking or red-looking curve.

Here the expectation when we do include beta hat comes out to be much larger than the case

when we did not include when rho was equal to 0. Why? Because the total effect is now also

accounting for the spillover effects, something that can be a spatial spillover.

So, you know theoretically, we saw total effect is greater than delta X beta when you have a

higher when you have a spatial spillover through the spatial lag term. This graph tells me if I

were to ignore if I had rho equals 0.9, but I altogether ignored this term rho X rho W y in my

regression model I will still end up with the blue curve, right? So, I will still be this

representation provided by the expectation of beta hat when rho was equal to 0, right?

The distance between these two articulates the bias. So, what happens if I ignore spatial lags

and they should have been included is that I will have a bias in my beta hat estimator right?

So, the OLS estimator bias is more and more severe as rho goes up right another thing to look

at is that the direction of bias is not just that it will be underreported but may even be

overreported.

And, we go from rho equals 0 to rho equals 0.2, and the total effect actually comes down. So,

it does not provide me with a direction automatically. So, these things are you know they

depend on context they depend on the setting, and so on.

The point here that I am trying to drive home is that we cannot really avoid these effects

when they are indeed present in the population process. If we do, then we have a sort of

misrepresentation of the population that we are trying to provide an explanation for, and so

on. So, that is it for the spatial lag model as a next step we are going to look at the spatial

error model in detail.

Thank you for your attention.


